@@ -540,8 +540,7 @@ m_remainder(double x, double y)
540540        absy  =  fabs (y );
541541        m  =  fmod (absx , absy );
542542
543-         /* 
544-            Warning: some subtlety here. What we *want* to know at this point is 
543+         /* Warning: some subtlety here. What we *want* to know at this point is 
545544           whether the remainder m is less than, equal to, or greater than half 
546545           of absy. However, we can't do that comparison directly because we 
547546           can't be sure that 0.5*absy is representable (the multiplication 
@@ -557,8 +556,7 @@ m_remainder(double x, double y)
557556           - if m < 0.5*absy then either (i) 0.5*absy is exactly representable, 
558557             in which case 0.5*absy < absy - m, so 0.5*absy <= c and hence m < 
559558             c, or (ii) absy is tiny, either subnormal or in the lowest normal 
560-              binade. Then absy - m is exactly representable and again m < c. 
561-         */ 
559+              binade. Then absy - m is exactly representable and again m < c. */ 
562560
563561        c  =  absy  -  m ;
564562        if  (m  <  c ) {
@@ -568,8 +566,7 @@ m_remainder(double x, double y)
568566            r  =  - c ;
569567        }
570568        else  {
571-             /* 
572-                Here absx is exactly halfway between two multiples of absy, 
569+             /* Here absx is exactly halfway between two multiples of absy, 
573570               and we need to choose the even multiple. x now has the form 
574571
575572                   absx = n * absy + m 
@@ -593,8 +590,7 @@ m_remainder(double x, double y)
593590
594591               Note that all steps in fmod(0.5 * (absx - m), absy) 
595592               will be computed exactly, with no rounding error 
596-                introduced. 
597-             */ 
593+                introduced. */ 
598594            assert (m  ==  c );
599595            r  =  m  -  2.0  *  fmod (0.5  *  (absx  -  m ), absy );
600596        }
@@ -1423,7 +1419,7 @@ math_fsum(PyObject *module, PyObject *seq)
14231419    if  (iter  ==  NULL )
14241420        return  NULL ;
14251421
1426-     for (;;) {           /* for x in iterable */ 
1422+     for   (;;) {           /* for x in iterable */ 
14271423        assert (0  <= n  &&  n  <= m );
14281424        assert ((m  ==  NUM_PARTIALS  &&  p  ==  ps ) || 
14291425               (m  >   NUM_PARTIALS  &&  p  !=  NULL ));
@@ -2450,8 +2446,7 @@ math_fmod_impl(PyObject *module, double x, double y)
24502446#ifdef  _MSC_VER 
24512447    /* Windows (e.g. Windows 10 with MSC v.1916) loose sign 
24522448       for zero result.  But C99+ says: "if y is nonzero, the result 
2453-        has the same sign as x". 
2454-      */ 
2449+        has the same sign as x". */ 
24552450    if  (r  ==  0.0  &&  y  !=  0.0 ) {
24562451        r  =  copysign (r , x );
24572452    }
@@ -3088,11 +3083,9 @@ math_pow_impl(PyObject *module, double x, double y)
30883083            if  (isnan (r )) {
30893084                errno  =  EDOM ;
30903085            }
3091-             /* 
3092-                an infinite result here arises either from: 
3086+             /* an infinite result here arises either from: 
30933087               (A) (+/-0.)**negative (-> divide-by-zero) 
3094-                (B) overflow of x**y with x and y finite 
3095-             */ 
3088+                (B) overflow of x**y with x and y finite */ 
30963089            else  if  (isinf (r )) {
30973090                if  (x  ==  0. )
30983091                    errno  =  EDOM ;
@@ -3266,27 +3259,24 @@ math_isclose_impl(PyObject *module, double a, double b, double rel_tol,
32663259        return  -1 ;
32673260    }
32683261
3269-     if  ( a  ==  b  ) {
3270-         /* short circuit exact equality -- needed to catch two infinities of 
3271-            the same sign. And perhaps speeds things up a bit sometimes. 
3272-         */ 
3262+     if  (a  ==  b ) {
3263+         /* Short circuit exact equality -- needed to catch two infinities of 
3264+            the same sign. And perhaps speeds things up a bit sometimes. */ 
32733265        return  1 ;
32743266    }
32753267
32763268    /* This catches the case of two infinities of opposite sign, or 
32773269       one infinity and one finite number. Two infinities of opposite 
32783270       sign would otherwise have an infinite relative tolerance. 
32793271       Two infinities of the same sign are caught by the equality check 
3280-        above. 
3281-     */ 
3272+        above. */ 
32823273
32833274    if  (isinf (a ) ||  isinf (b )) {
32843275        return  0 ;
32853276    }
32863277
3287-     /* now do the regular computation 
3288-        this is essentially the "weak" test from the Boost library 
3289-     */ 
3278+     /* Now do the regular computation. This is essentially the "weak" test 
3279+        from the Boost library. */ 
32903280
32913281    diff  =  fabs (b  -  a );
32923282
@@ -3378,9 +3368,8 @@ math_prod_impl(PyObject *module, PyObject *iterable, PyObject *start)
33783368    Py_INCREF (result );
33793369#ifndef  SLOW_PROD 
33803370    /* Fast paths for integers keeping temporary products in C. 
3381-      * Assumes all inputs are the same type. 
3382-      * If the assumption fails, default to use PyObjects instead. 
3383-     */ 
3371+        Assumes all inputs are the same type. 
3372+        If the assumption fails, default to use PyObjects instead. */ 
33843373    if  (PyLong_CheckExact (result )) {
33853374        int  overflow ;
33863375        long  i_result  =  PyLong_AsLongAndOverflow (result , & overflow );
@@ -3389,7 +3378,7 @@ math_prod_impl(PyObject *module, PyObject *iterable, PyObject *start)
33893378            Py_SETREF (result , NULL );
33903379        }
33913380        /* Loop over all the items in the iterable until we finish, we overflow 
3392-          *  or we found a non integer element */ 
3381+             or we found a non integer element */ 
33933382        while  (result  ==  NULL ) {
33943383            item  =  PyIter_Next (iter );
33953384            if  (item  ==  NULL ) {
@@ -3409,7 +3398,7 @@ math_prod_impl(PyObject *module, PyObject *iterable, PyObject *start)
34093398                }
34103399            }
34113400            /* Either overflowed or is not an int. 
3412-              *  Restore real objects and process normally */ 
3401+                 Restore real objects and process normally */ 
34133402            result  =  PyLong_FromLong (i_result );
34143403            if  (result  ==  NULL ) {
34153404                Py_DECREF (item );
@@ -3433,7 +3422,7 @@ math_prod_impl(PyObject *module, PyObject *iterable, PyObject *start)
34333422    if  (PyFloat_CheckExact (result )) {
34343423        double  f_result  =  PyFloat_AS_DOUBLE (result );
34353424        Py_SETREF (result , NULL );
3436-         while (result  ==  NULL ) {
3425+         while   (result  ==  NULL ) {
34373426            item  =  PyIter_Next (iter );
34383427            if  (item  ==  NULL ) {
34393428                Py_DECREF (iter );
@@ -3476,7 +3465,7 @@ math_prod_impl(PyObject *module, PyObject *iterable, PyObject *start)
34763465#endif 
34773466    /* Consume rest of the iterable (if any) that could not be handled 
34783467       by specialized functions above.*/ 
3479-     for (;;) {
3468+     for   (;;) {
34803469        item  =  PyIter_Next (iter );
34813470        if  (item  ==  NULL ) {
34823471            /* error, or end-of-sequence */ 
0 commit comments