@@ -789,6 +789,7 @@ which incur interpreter overhead.
789789.. testcode ::
790790
791791 import collections
792+ import functools
792793 import math
793794 import operator
794795 import random
@@ -1082,7 +1083,7 @@ The following recipes have a more mathematical flavor:
10821083 # convolve(data, [1, -2, 1]) --> 2nd finite difference (2nd derivative)
10831084 kernel = tuple(kernel)[::-1]
10841085 n = len(kernel)
1085- padded_signal = chain(repeat(0, n-1), signal, [0] * ( n-1))
1086+ padded_signal = chain(repeat(0, n-1), signal, repeat(0, n-1))
10861087 for window in sliding_window(padded_signal, n):
10871088 yield math.sumprod(kernel, window)
10881089
@@ -1092,10 +1093,8 @@ The following recipes have a more mathematical flavor:
10921093 (x - 5) (x + 4) (x - 3) expands to: x³ -4x² -17x + 60
10931094 """
10941095 # polynomial_from_roots([5, -4, 3]) --> [1, -4, -17, 60]
1095- expansion = [1]
1096- for r in roots:
1097- expansion = convolve(expansion, (1, -r))
1098- return list(expansion)
1096+ factors = zip(repeat(1), map(operator.neg, roots))
1097+ return list(functools.reduce(convolve, factors, [1]))
10991098
11001099 def polynomial_eval(coefficients, x):
11011100 """Evaluate a polynomial at a specific value.
0 commit comments