Skip to content

Commit 3b44dee

Browse files
Add files via upload
1 parent 0f244af commit 3b44dee

File tree

3 files changed

+4608
-0
lines changed

3 files changed

+4608
-0
lines changed
Lines changed: 176 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,176 @@
1+
#================================================================
2+
#
3+
# File name : RL-Bitcoin-trading-bot_2.py
4+
# Author : PyLessons
5+
# Created date: 2020-12-12
6+
# Website : https://pylessons.com/
7+
# GitHub : https://github.com/pythonlessons/RL-Bitcoin-trading-bot
8+
# Description : Trading Crypto with Reinforcement Learning #2
9+
#
10+
#================================================================
11+
import pandas as pd
12+
import numpy as np
13+
import random
14+
from collections import deque
15+
from utils import TradingGraph, Write_to_file
16+
17+
class CustomEnv:
18+
# A custom Bitcoin trading environment
19+
def __init__(self, df, initial_balance=1000, lookback_window_size=50, Render_range = 100):
20+
# Define action space and state size and other custom parameters
21+
self.df = df.dropna().reset_index()
22+
self.df_total_steps = len(self.df)-1
23+
self.initial_balance = initial_balance
24+
self.lookback_window_size = lookback_window_size
25+
self.Render_range = Render_range # render range in visualization
26+
27+
# Action space from 0 to 3, 0 is hold, 1 is buy, 2 is sell
28+
self.action_space = np.array([0, 1, 2])
29+
30+
# Orders history contains the balance, net_worth, crypto_bought, crypto_sold, crypto_held values for the last lookback_window_size steps
31+
self.orders_history = deque(maxlen=self.lookback_window_size)
32+
33+
# Market history contains the OHCL values for the last lookback_window_size prices
34+
self.market_history = deque(maxlen=self.lookback_window_size)
35+
36+
# State size contains Market+Orders history for the last lookback_window_size steps
37+
self.state_size = (self.lookback_window_size, 10)
38+
39+
# Reset the state of the environment to an initial state
40+
def reset(self, env_steps_size = 0):
41+
self.visualization = TradingGraph(Render_range=self.Render_range) # init visualization
42+
self.trades = deque(maxlen=self.Render_range) # limited orders memory for visualization
43+
44+
self.balance = self.initial_balance
45+
self.net_worth = self.initial_balance
46+
self.prev_net_worth = self.initial_balance
47+
self.crypto_held = 0
48+
self.crypto_sold = 0
49+
self.crypto_bought = 0
50+
if env_steps_size > 0: # used for training dataset
51+
self.start_step = random.randint(self.lookback_window_size, self.df_total_steps - env_steps_size)
52+
self.end_step = self.start_step + env_steps_size
53+
else: # used for testing dataset
54+
self.start_step = self.lookback_window_size
55+
self.end_step = self.df_total_steps
56+
57+
self.current_step = self.start_step
58+
59+
for i in reversed(range(self.lookback_window_size)):
60+
current_step = self.current_step - i
61+
self.orders_history.append([self.balance, self.net_worth, self.crypto_bought, self.crypto_sold, self.crypto_held])
62+
self.market_history.append([self.df.loc[current_step, 'Open'],
63+
self.df.loc[current_step, 'High'],
64+
self.df.loc[current_step, 'Low'],
65+
self.df.loc[current_step, 'Close'],
66+
self.df.loc[current_step, 'Volume']
67+
])
68+
69+
state = np.concatenate((self.market_history, self.orders_history), axis=1)
70+
return state
71+
72+
# Get the data points for the given current_step
73+
def _next_observation(self):
74+
self.market_history.append([self.df.loc[self.current_step, 'Open'],
75+
self.df.loc[self.current_step, 'High'],
76+
self.df.loc[self.current_step, 'Low'],
77+
self.df.loc[self.current_step, 'Close'],
78+
self.df.loc[self.current_step, 'Volume']
79+
])
80+
obs = np.concatenate((self.market_history, self.orders_history), axis=1)
81+
return obs
82+
83+
# Execute one time step within the environment
84+
def step(self, action):
85+
self.crypto_bought = 0
86+
self.crypto_sold = 0
87+
self.current_step += 1
88+
89+
# Set the current price to a random price between open and close
90+
current_price = random.uniform(
91+
self.df.loc[self.current_step, 'Open'],
92+
self.df.loc[self.current_step, 'Close'])
93+
Date = self.df.loc[self.current_step, 'Date'] # for visualization
94+
High = self.df.loc[self.current_step, 'High'] # for visualization
95+
Low = self.df.loc[self.current_step, 'Low'] # for visualization
96+
97+
if action == 0: # Hold
98+
pass
99+
100+
elif action == 1 and self.balance > self.initial_balance/100:
101+
# Buy with 100% of current balance
102+
self.crypto_bought = self.balance / current_price
103+
self.balance -= self.crypto_bought * current_price
104+
self.crypto_held += self.crypto_bought
105+
self.trades.append({'Date' : Date, 'High' : High, 'Low' : Low, 'total': self.crypto_bought, 'type': "buy"})
106+
107+
elif action == 2 and self.crypto_held>0:
108+
# Sell 100% of current crypto held
109+
self.crypto_sold = self.crypto_held
110+
self.balance += self.crypto_sold * current_price
111+
self.crypto_held -= self.crypto_sold
112+
self.trades.append({'Date' : Date, 'High' : High, 'Low' : Low, 'total': self.crypto_sold, 'type': "sell"})
113+
114+
self.prev_net_worth = self.net_worth
115+
self.net_worth = self.balance + self.crypto_held * current_price
116+
117+
self.orders_history.append([self.balance, self.net_worth, self.crypto_bought, self.crypto_sold, self.crypto_held])
118+
#Write_to_file(Date, self.orders_history[-1])
119+
120+
# Calculate reward
121+
reward = self.net_worth - self.prev_net_worth
122+
123+
if self.net_worth <= self.initial_balance/2:
124+
done = True
125+
else:
126+
done = False
127+
128+
obs = self._next_observation()
129+
130+
return obs, reward, done
131+
132+
# render environment
133+
def render(self, visualize = False):
134+
#print(f'Step: {self.current_step}, Net Worth: {self.net_worth}')
135+
if visualize:
136+
Date = self.df.loc[self.current_step, 'Date']
137+
Open = self.df.loc[self.current_step, 'Open']
138+
Close = self.df.loc[self.current_step, 'Close']
139+
High = self.df.loc[self.current_step, 'High']
140+
Low = self.df.loc[self.current_step, 'Low']
141+
Volume = self.df.loc[self.current_step, 'Volume']
142+
143+
# Render the environment to the screen
144+
self.visualization.render(Date, Open, High, Low, Close, Volume, self.net_worth, self.trades)
145+
146+
147+
def Random_games(env, visualize, train_episodes = 50, training_batch_size=500):
148+
average_net_worth = 0
149+
for episode in range(train_episodes):
150+
state = env.reset(env_steps_size = training_batch_size)
151+
while True:
152+
env.render(visualize)
153+
154+
action = np.random.randint(3, size=1)[0]
155+
156+
state, reward, done = env.step(action)
157+
158+
if env.current_step == env.end_step:
159+
average_net_worth += env.net_worth
160+
print("net_worth:", env.net_worth)
161+
break
162+
163+
print("average_net_worth:", average_net_worth/train_episodes)
164+
165+
166+
df = pd.read_csv('./pricedata.csv')
167+
df = df.sort_values('Date')
168+
169+
lookback_window_size = 50
170+
train_df = df[:-720-lookback_window_size]
171+
test_df = df[-720-lookback_window_size:] # 30 days
172+
173+
train_env = CustomEnv(train_df, lookback_window_size=lookback_window_size)
174+
test_env = CustomEnv(test_df, lookback_window_size=lookback_window_size)
175+
176+
Random_games(test_env, visualize=True, train_episodes = 1, training_batch_size=300)

0 commit comments

Comments
 (0)