|
| 1 | +#================================================================ |
| 2 | +# |
| 3 | +# File name : multiprocessing_env.py |
| 4 | +# Author : PyLessons |
| 5 | +# Created date: 2021-..-.. |
| 6 | +# Website : https://pylessons.com/ |
| 7 | +# GitHub : https://github.com/pythonlessons/RL-Bitcoin-trading-bot |
| 8 | +# Description : functions to train/test multiple custom BTC trading environments |
| 9 | +# |
| 10 | +#================================================================ |
| 11 | +from collections import deque |
| 12 | +from multiprocessing import Process, Pipe |
| 13 | +import numpy as np |
| 14 | +from datetime import datetime |
| 15 | + |
| 16 | +class Environment(Process): |
| 17 | + def __init__(self, env_idx, child_conn, env, training_batch_size, visualize): |
| 18 | + super(Environment, self).__init__() |
| 19 | + self.env = env |
| 20 | + self.env_idx = env_idx |
| 21 | + self.child_conn = child_conn |
| 22 | + self.training_batch_size = training_batch_size |
| 23 | + self.visualize = visualize |
| 24 | + |
| 25 | + def run(self): |
| 26 | + super(Environment, self).run() |
| 27 | + state = self.env.reset(env_steps_size = self.training_batch_size) |
| 28 | + self.child_conn.send(state) |
| 29 | + while True: |
| 30 | + reset, net_worth, episode_orders = 0, 0, 0 |
| 31 | + action = self.child_conn.recv() |
| 32 | + if self.env_idx == 0: |
| 33 | + self.env.render(self.visualize) |
| 34 | + state, reward, done = self.env.step(action) |
| 35 | + |
| 36 | + if done or self.env.current_step == self.env.end_step: |
| 37 | + net_worth = self.env.net_worth |
| 38 | + episode_orders = self.env.episode_orders |
| 39 | + state = self.env.reset(env_steps_size = self.training_batch_size) |
| 40 | + reset = 1 |
| 41 | + |
| 42 | + self.child_conn.send([state, reward, done, reset, net_worth, episode_orders]) |
| 43 | + |
| 44 | +def train_multiprocessing(CustomEnv, agent, train_df, num_worker=4, training_batch_size=500, visualize=False, EPISODES=10000): |
| 45 | + works, parent_conns, child_conns = [], [], [] |
| 46 | + episode = 0 |
| 47 | + total_average = deque(maxlen=100) # save recent 100 episodes net worth |
| 48 | + best_average = 0 # used to track best average net worth |
| 49 | + |
| 50 | + for idx in range(num_worker): |
| 51 | + parent_conn, child_conn = Pipe() |
| 52 | + env = CustomEnv(train_df, lookback_window_size=agent.lookback_window_size) |
| 53 | + work = Environment(idx, child_conn, env, training_batch_size, visualize) |
| 54 | + work.start() |
| 55 | + works.append(work) |
| 56 | + parent_conns.append(parent_conn) |
| 57 | + child_conns.append(child_conn) |
| 58 | + |
| 59 | + agent.create_writer(env.initial_balance, env.normalize_value, EPISODES) # create TensorBoard writer |
| 60 | + |
| 61 | + states = [[] for _ in range(num_worker)] |
| 62 | + next_states = [[] for _ in range(num_worker)] |
| 63 | + actions = [[] for _ in range(num_worker)] |
| 64 | + rewards = [[] for _ in range(num_worker)] |
| 65 | + dones = [[] for _ in range(num_worker)] |
| 66 | + predictions = [[] for _ in range(num_worker)] |
| 67 | + |
| 68 | + state = [0 for _ in range(num_worker)] |
| 69 | + for worker_id, parent_conn in enumerate(parent_conns): |
| 70 | + state[worker_id] = parent_conn.recv() |
| 71 | + |
| 72 | + while episode < EPISODES: |
| 73 | + predictions_list = agent.Actor.actor_predict(np.reshape(state, [num_worker]+[_ for _ in state[0].shape])) |
| 74 | + actions_list = [np.random.choice(agent.action_space, p=i) for i in predictions_list] |
| 75 | + |
| 76 | + for worker_id, parent_conn in enumerate(parent_conns): |
| 77 | + parent_conn.send(actions_list[worker_id]) |
| 78 | + action_onehot = np.zeros(agent.action_space.shape[0]) |
| 79 | + action_onehot[actions_list[worker_id]] = 1 |
| 80 | + actions[worker_id].append(action_onehot) |
| 81 | + predictions[worker_id].append(predictions_list[worker_id]) |
| 82 | + |
| 83 | + for worker_id, parent_conn in enumerate(parent_conns): |
| 84 | + next_state, reward, done, reset, net_worth, episode_orders = parent_conn.recv() |
| 85 | + states[worker_id].append(np.expand_dims(state[worker_id], axis=0)) |
| 86 | + next_states[worker_id].append(np.expand_dims(next_state, axis=0)) |
| 87 | + rewards[worker_id].append(reward) |
| 88 | + dones[worker_id].append(done) |
| 89 | + state[worker_id] = next_state |
| 90 | + |
| 91 | + if reset: |
| 92 | + episode += 1 |
| 93 | + a_loss, c_loss = agent.replay(states[worker_id], actions[worker_id], rewards[worker_id], predictions[worker_id], dones[worker_id], next_states[worker_id]) |
| 94 | + total_average.append(net_worth) |
| 95 | + average = np.average(total_average) |
| 96 | + |
| 97 | + agent.writer.add_scalar('Data/average net_worth', average, episode) |
| 98 | + agent.writer.add_scalar('Data/episode_orders', episode_orders, episode) |
| 99 | + |
| 100 | + print("episode: {:<5} worker: {:<1} net worth: {:<7.2f} average: {:<7.2f} orders: {}".format(episode, worker_id, net_worth, average, episode_orders)) |
| 101 | + if episode > len(total_average): |
| 102 | + if best_average < average: |
| 103 | + best_average = average |
| 104 | + print("Saving model") |
| 105 | + agent.save(score="{:.2f}".format(best_average), args=[episode, average, episode_orders, a_loss, c_loss]) |
| 106 | + agent.save() |
| 107 | + |
| 108 | + states[worker_id] = [] |
| 109 | + next_states[worker_id] = [] |
| 110 | + actions[worker_id] = [] |
| 111 | + rewards[worker_id] = [] |
| 112 | + dones[worker_id] = [] |
| 113 | + predictions[worker_id] = [] |
| 114 | + |
| 115 | + agent.end_training_log() |
| 116 | + # terminating processes after while loop |
| 117 | + works.append(work) |
| 118 | + for work in works: |
| 119 | + work.terminate() |
| 120 | + print('TERMINATED:', work) |
| 121 | + work.join() |
| 122 | + |
| 123 | +def test_multiprocessing(CustomEnv, agent, test_df, num_worker = 4, visualize=False, test_episodes=1000, folder="", name="Crypto_trader", comment="", initial_balance=1000): |
| 124 | + agent.load(folder, name) |
| 125 | + works, parent_conns, child_conns = [], [], [] |
| 126 | + average_net_worth = 0 |
| 127 | + average_orders = 0 |
| 128 | + no_profit_episodes = 0 |
| 129 | + episode = 0 |
| 130 | + |
| 131 | + for idx in range(num_worker): |
| 132 | + parent_conn, child_conn = Pipe() |
| 133 | + env = CustomEnv(test_df, initial_balance=initial_balance, lookback_window_size=agent.lookback_window_size) |
| 134 | + work = Environment(idx, child_conn, env, training_batch_size=0, visualize=visualize) |
| 135 | + work.start() |
| 136 | + works.append(work) |
| 137 | + parent_conns.append(parent_conn) |
| 138 | + child_conns.append(child_conn) |
| 139 | + |
| 140 | + state = [0 for _ in range(num_worker)] |
| 141 | + for worker_id, parent_conn in enumerate(parent_conns): |
| 142 | + state[worker_id] = parent_conn.recv() |
| 143 | + |
| 144 | + while episode < test_episodes: |
| 145 | + predictions_list = agent.Actor.actor_predict(np.reshape(state, [num_worker]+[_ for _ in state[0].shape])) |
| 146 | + actions_list = [np.random.choice(agent.action_space, p=i) for i in predictions_list] |
| 147 | + |
| 148 | + for worker_id, parent_conn in enumerate(parent_conns): |
| 149 | + parent_conn.send(actions_list[worker_id]) |
| 150 | + |
| 151 | + for worker_id, parent_conn in enumerate(parent_conns): |
| 152 | + next_state, reward, done, reset, net_worth, episode_orders = parent_conn.recv() |
| 153 | + state[worker_id] = next_state |
| 154 | + |
| 155 | + if reset: |
| 156 | + episode += 1 |
| 157 | + #print(episode, net_worth, episode_orders) |
| 158 | + average_net_worth += net_worth |
| 159 | + average_orders += episode_orders |
| 160 | + if net_worth < initial_balance: no_profit_episodes += 1 # calculate episode count where we had negative profit through episode |
| 161 | + print("episode: {:<5} worker: {:<1} net worth: {:<7.2f} average_net_worth: {:<7.2f} orders: {}".format(episode, worker_id, net_worth, average_net_worth/episode, episode_orders)) |
| 162 | + if episode == test_episodes: break |
| 163 | + |
| 164 | + print("No profit episodes: {}".format(no_profit_episodes)) |
| 165 | + # save test results to test_results.txt file |
| 166 | + with open("test_results.txt", "a+") as results: |
| 167 | + current_date = datetime.now().strftime('%Y-%m-%d %H:%M') |
| 168 | + results.write(f'{current_date}, {name}, test episodes:{test_episodes}') |
| 169 | + results.write(f', net worth:{average_net_worth/(episode+1)}, orders per episode:{average_orders/test_episodes}') |
| 170 | + results.write(f', no profit episodes:{no_profit_episodes}, comment: {comment}\n') |
| 171 | + |
| 172 | + # terminating processes after while loop |
| 173 | + works.append(work) |
| 174 | + for work in works: |
| 175 | + work.terminate() |
| 176 | + print('TERMINATED:', work) |
| 177 | + work.join() |
0 commit comments