|
| 1 | +# Tutorial by www.pylessons.com |
| 2 | +# Tutorial written for - Tensorflow 2.3.1 |
| 3 | + |
| 4 | +import os |
| 5 | +import random |
| 6 | +import gym |
| 7 | +import pylab |
| 8 | +import numpy as np |
| 9 | +from collections import deque |
| 10 | +from tensorflow.keras.models import Model, load_model |
| 11 | +from tensorflow.keras.layers import Input, Dense, Lambda, Add |
| 12 | +from tensorflow.keras.optimizers import Adam, RMSprop |
| 13 | +from tensorflow.keras import backend as K |
| 14 | + |
| 15 | +def OurModel(input_shape, action_space, dueling): |
| 16 | + X_input = Input(input_shape) |
| 17 | + X = X_input |
| 18 | + |
| 19 | + # 'Dense' is the basic form of a neural network layer |
| 20 | + # Input Layer of state size(4) and Hidden Layer with 512 nodes |
| 21 | + X = Dense(512, input_shape=input_shape, activation="relu", kernel_initializer='he_uniform')(X) |
| 22 | + |
| 23 | + # Hidden layer with 256 nodes |
| 24 | + X = Dense(256, activation="relu", kernel_initializer='he_uniform')(X) |
| 25 | + |
| 26 | + # Hidden layer with 64 nodes |
| 27 | + X = Dense(64, activation="relu", kernel_initializer='he_uniform')(X) |
| 28 | + |
| 29 | + if dueling: |
| 30 | + state_value = Dense(1, kernel_initializer='he_uniform')(X) |
| 31 | + state_value = Lambda(lambda s: K.expand_dims(s[:, 0], -1), output_shape=(action_space,))(state_value) |
| 32 | + |
| 33 | + action_advantage = Dense(action_space, kernel_initializer='he_uniform')(X) |
| 34 | + action_advantage = Lambda(lambda a: a[:, :] - K.mean(a[:, :], keepdims=True), output_shape=(action_space,))(action_advantage) |
| 35 | + |
| 36 | + X = Add()([state_value, action_advantage]) |
| 37 | + else: |
| 38 | + # Output Layer with # of actions: 2 nodes (left, right) |
| 39 | + X = Dense(action_space, activation="linear", kernel_initializer='he_uniform')(X) |
| 40 | + |
| 41 | + model = Model(inputs = X_input, outputs = X) |
| 42 | + model.compile(loss="mean_squared_error", optimizer=RMSprop(lr=0.00025, rho=0.95, epsilon=0.01), metrics=["accuracy"]) |
| 43 | + |
| 44 | + model.summary() |
| 45 | + return model |
| 46 | + |
| 47 | +class DQNAgent: |
| 48 | + def __init__(self, env_name): |
| 49 | + self.env_name = env_name |
| 50 | + self.env = gym.make(env_name) |
| 51 | + self.env.seed(0) |
| 52 | + # by default, CartPole-v1 has max episode steps = 500 |
| 53 | + self.env._max_episode_steps = 4000 |
| 54 | + self.state_size = self.env.observation_space.shape[0] |
| 55 | + self.action_size = self.env.action_space.n |
| 56 | + |
| 57 | + self.EPISODES = 1000 |
| 58 | + self.memory = deque(maxlen=2000) |
| 59 | + self.gamma = 0.95 # discount rate |
| 60 | + |
| 61 | + # EXPLORATION HYPERPARAMETERS for epsilon and epsilon greedy strategy |
| 62 | + self.epsilon = 1.0 # exploration probability at start |
| 63 | + self.epsilon_min = 0.01 # minimum exploration probability |
| 64 | + self.epsilon_decay = 0.0005 # exponential decay rate for exploration prob |
| 65 | + |
| 66 | + self.batch_size = 32 |
| 67 | + |
| 68 | + # defining model parameters |
| 69 | + self.ddqn = True # use double deep q network |
| 70 | + self.Soft_Update = False # use soft parameter update |
| 71 | + self.dueling = True # use dealing network |
| 72 | + self.epsilon_greedy = True # use epsilon greedy strategy |
| 73 | + |
| 74 | + self.TAU = 0.1 # target network soft update hyperparameter |
| 75 | + |
| 76 | + self.Save_Path = 'Models' |
| 77 | + if not os.path.exists(self.Save_Path): os.makedirs(self.Save_Path) |
| 78 | + self.scores, self.episodes, self.average = [], [], [] |
| 79 | + |
| 80 | + self.Model_name = os.path.join(self.Save_Path, self.env_name+"_e_greedy.h5") |
| 81 | + |
| 82 | + # create main model and target model |
| 83 | + self.model = OurModel(input_shape=(self.state_size,), action_space = self.action_size, dueling = self.dueling) |
| 84 | + self.target_model = OurModel(input_shape=(self.state_size,), action_space = self.action_size, dueling = self.dueling) |
| 85 | + |
| 86 | + # after some time interval update the target model to be same with model |
| 87 | + def update_target_model(self): |
| 88 | + if not self.Soft_Update and self.ddqn: |
| 89 | + self.target_model.set_weights(self.model.get_weights()) |
| 90 | + return |
| 91 | + if self.Soft_Update and self.ddqn: |
| 92 | + q_model_theta = self.model.get_weights() |
| 93 | + target_model_theta = self.target_model.get_weights() |
| 94 | + counter = 0 |
| 95 | + for q_weight, target_weight in zip(q_model_theta, target_model_theta): |
| 96 | + target_weight = target_weight * (1-self.TAU) + q_weight * self.TAU |
| 97 | + target_model_theta[counter] = target_weight |
| 98 | + counter += 1 |
| 99 | + self.target_model.set_weights(target_model_theta) |
| 100 | + |
| 101 | + def remember(self, state, action, reward, next_state, done): |
| 102 | + experience = state, action, reward, next_state, done |
| 103 | + self.memory.append((experience)) |
| 104 | + |
| 105 | + def act(self, state, decay_step): |
| 106 | + # EPSILON GREEDY STRATEGY |
| 107 | + if self.epsilon_greedy: |
| 108 | + # Here we'll use an improved version of our epsilon greedy strategy for Q-learning |
| 109 | + explore_probability = self.epsilon_min + (self.epsilon - self.epsilon_min) * np.exp(-self.epsilon_decay * decay_step) |
| 110 | + # OLD EPSILON STRATEGY |
| 111 | + else: |
| 112 | + if self.epsilon > self.epsilon_min: |
| 113 | + self.epsilon *= (1-self.epsilon_decay) |
| 114 | + explore_probability = self.epsilon |
| 115 | + |
| 116 | + if explore_probability > np.random.rand(): |
| 117 | + # Make a random action (exploration) |
| 118 | + return random.randrange(self.action_size), explore_probability |
| 119 | + else: |
| 120 | + # Get action from Q-network (exploitation) |
| 121 | + # Estimate the Qs values state |
| 122 | + # Take the biggest Q value (= the best action) |
| 123 | + return np.argmax(self.model.predict(state)), explore_probability |
| 124 | + |
| 125 | + def replay(self): |
| 126 | + if len(self.memory) < self.batch_size: |
| 127 | + return |
| 128 | + # Randomly sample minibatch from the memory |
| 129 | + minibatch = random.sample(self.memory, self.batch_size) |
| 130 | + |
| 131 | + state = np.zeros((self.batch_size, self.state_size)) |
| 132 | + next_state = np.zeros((self.batch_size, self.state_size)) |
| 133 | + action, reward, done = [], [], [] |
| 134 | + |
| 135 | + # do this before prediction |
| 136 | + # for speedup, this could be done on the tensor level |
| 137 | + # but easier to understand using a loop |
| 138 | + for i in range(self.batch_size): |
| 139 | + state[i] = minibatch[i][0] |
| 140 | + action.append(minibatch[i][1]) |
| 141 | + reward.append(minibatch[i][2]) |
| 142 | + next_state[i] = minibatch[i][3] |
| 143 | + done.append(minibatch[i][4]) |
| 144 | + |
| 145 | + # do batch prediction to save speed |
| 146 | + # predict Q-values for starting state using the main network |
| 147 | + target = self.model.predict(state) |
| 148 | + # predict best action in ending state using the main network |
| 149 | + target_next = self.model.predict(next_state) |
| 150 | + # predict Q-values for ending state using the target network |
| 151 | + target_val = self.target_model.predict(next_state) |
| 152 | + |
| 153 | + for i in range(len(minibatch)): |
| 154 | + # correction on the Q value for the action used |
| 155 | + if done[i]: |
| 156 | + target[i][action[i]] = reward[i] |
| 157 | + else: |
| 158 | + if self.ddqn: # Double - DQN |
| 159 | + # current Q Network selects the action |
| 160 | + # a'_max = argmax_a' Q(s', a') |
| 161 | + a = np.argmax(target_next[i]) |
| 162 | + # target Q Network evaluates the action |
| 163 | + # Q_max = Q_target(s', a'_max) |
| 164 | + target[i][action[i]] = reward[i] + self.gamma * (target_val[i][a]) |
| 165 | + else: # Standard - DQN |
| 166 | + # DQN chooses the max Q value among next actions |
| 167 | + # selection and evaluation of action is on the target Q Network |
| 168 | + # Q_max = max_a' Q_target(s', a') |
| 169 | + target[i][action[i]] = reward[i] + self.gamma * (np.amax(target_next[i])) |
| 170 | + |
| 171 | + # Train the Neural Network with batches |
| 172 | + self.model.fit(state, target, batch_size=self.batch_size, verbose=0) |
| 173 | + |
| 174 | + def load(self, name): |
| 175 | + self.model = load_model(name) |
| 176 | + |
| 177 | + def save(self, name): |
| 178 | + self.model.save(name) |
| 179 | + |
| 180 | + pylab.figure(figsize=(18, 9)) |
| 181 | + def PlotModel(self, score, episode): |
| 182 | + self.scores.append(score) |
| 183 | + self.episodes.append(episode) |
| 184 | + self.average.append(sum(self.scores[-50:]) / len(self.scores[-50:])) |
| 185 | + pylab.plot(self.episodes, self.average, 'r') |
| 186 | + pylab.plot(self.episodes, self.scores, 'b') |
| 187 | + pylab.ylabel('Score', fontsize=18) |
| 188 | + pylab.xlabel('Steps', fontsize=18) |
| 189 | + dqn = 'DQN_' |
| 190 | + softupdate = '' |
| 191 | + dueling = '' |
| 192 | + greedy = '' |
| 193 | + if self.ddqn: dqn = 'DDQN_' |
| 194 | + if self.Soft_Update: softupdate = '_soft' |
| 195 | + if self.dueling: dueling = '_Dueling' |
| 196 | + if self.epsilon_greedy: greedy = '_Greedy' |
| 197 | + try: |
| 198 | + pylab.savefig(dqn+self.env_name+softupdate+dueling+greedy+".png") |
| 199 | + except OSError: |
| 200 | + pass |
| 201 | + |
| 202 | + return str(self.average[-1])[:5] |
| 203 | + |
| 204 | + def run(self): |
| 205 | + decay_step = 0 |
| 206 | + for e in range(self.EPISODES): |
| 207 | + state = self.env.reset() |
| 208 | + state = np.reshape(state, [1, self.state_size]) |
| 209 | + done = False |
| 210 | + i = 0 |
| 211 | + while not done: |
| 212 | + #self.env.render() |
| 213 | + decay_step += 1 |
| 214 | + action, explore_probability = self.act(state, decay_step) |
| 215 | + next_state, reward, done, _ = self.env.step(action) |
| 216 | + next_state = np.reshape(next_state, [1, self.state_size]) |
| 217 | + if not done or i == self.env._max_episode_steps-1: |
| 218 | + reward = reward |
| 219 | + else: |
| 220 | + reward = -100 |
| 221 | + self.remember(state, action, reward, next_state, done) |
| 222 | + state = next_state |
| 223 | + i += 1 |
| 224 | + if done: |
| 225 | + # every step update target model |
| 226 | + self.update_target_model() |
| 227 | + |
| 228 | + # every episode, plot the result |
| 229 | + average = self.PlotModel(i, e) |
| 230 | + |
| 231 | + print("episode: {}/{}, score: {}, e: {:.2}, average: {}".format(e, self.EPISODES, i, explore_probability, average)) |
| 232 | + if i == self.env._max_episode_steps: |
| 233 | + print("Saving trained model to", self.Model_name) |
| 234 | + self.save(self.Model_name) |
| 235 | + break |
| 236 | + |
| 237 | + self.replay() |
| 238 | + |
| 239 | + def test(self): |
| 240 | + self.load(self.Model_name) |
| 241 | + for e in range(self.EPISODES): |
| 242 | + state = self.env.reset() |
| 243 | + state = np.reshape(state, [1, self.state_size]) |
| 244 | + done = False |
| 245 | + i = 0 |
| 246 | + while not done: |
| 247 | + self.env.render() |
| 248 | + action = np.argmax(self.model.predict(state)) |
| 249 | + next_state, reward, done, _ = self.env.step(action) |
| 250 | + state = np.reshape(next_state, [1, self.state_size]) |
| 251 | + i += 1 |
| 252 | + if done: |
| 253 | + print("episode: {}/{}, score: {}".format(e, self.EPISODES, i)) |
| 254 | + break |
| 255 | + |
| 256 | +if __name__ == "__main__": |
| 257 | + env_name = 'CartPole-v1' |
| 258 | + agent = DQNAgent(env_name) |
| 259 | + agent.run() |
| 260 | + #agent.test() |
0 commit comments