1- from mltu .inferenceModel import OnnxInferenceModel
2- import tensorflow as tf
3- try : [tf .config .experimental .set_memory_growth (gpu , True ) for gpu in tf .config .experimental .list_physical_devices ("GPU" )]
4- except : pass
51import numpy as np
62
73from mltu .tokenizers import CustomTokenizer
4+ from mltu .inferenceModel import OnnxInferenceModel
85
96class PtEnTranslator (OnnxInferenceModel ):
107 def __init__ (self , * args , ** kwargs ):
@@ -13,8 +10,6 @@ def __init__(self, *args, **kwargs):
1310 self .new_inputs = self .model .get_inputs ()
1411 self .tokenizer = CustomTokenizer .load (self .metadata ["tokenizer" ])
1512 self .detokenizer = CustomTokenizer .load (self .metadata ["detokenizer" ])
16- # self.eng_tokenizer = CustomTokenizer.load("Tutorials/09_transformers/eng_tokenizer.json")
17- # self.pt_tokenizer = CustomTokenizer.load("Tutorials/09_transformers/pt_tokenizer.json")
1813
1914 def predict (self , sentence ):
2015 tokenized_sentence = self .tokenizer .texts_to_sequences ([sentence ])[0 ]
@@ -53,19 +48,12 @@ def read_files(path):
5348# Consider only sentences with length <= 500
5449max_lenght = 500
5550val_examples = [[es_sentence , en_sentence ] for es_sentence , en_sentence in zip (es_validation_data , en_validation_data ) if len (es_sentence ) <= max_lenght and len (en_sentence ) <= max_lenght ]
56- # es_validation_data, en_validation_data = zip(*val_dataset)
57-
58-
59-
60-
6151
6252translator = PtEnTranslator ("Models/09_translation_transformer/202307241748/model.onnx" )
6353
64-
6554val_dataset = []
6655for es , en in val_examples :
6756 results = translator .predict (es )
6857 print (en )
6958 print (results )
70- print ()
71- # val_dataset.append([pt.numpy().decode('utf-8'), en.numpy().decode('utf-8')])
59+ print ()
0 commit comments