11import numpy as np
2+ import time
23
34from mltu .tokenizers import CustomTokenizer
45from mltu .inferenceModel import OnnxInferenceModel
@@ -12,6 +13,7 @@ def __init__(self, *args, **kwargs):
1213 self .detokenizer = CustomTokenizer .load (self .metadata ["detokenizer" ])
1314
1415 def predict (self , sentence ):
16+ start = time .time ()
1517 tokenized_sentence = self .tokenizer .texts_to_sequences ([sentence ])[0 ]
1618 encoder_input = np .pad (tokenized_sentence , (0 , self .tokenizer .max_length - len (tokenized_sentence )), constant_values = 0 ).astype (np .int64 )
1719
@@ -30,8 +32,7 @@ def predict(self, sentence):
3032 break
3133
3234 results = self .detokenizer .detokenize ([tokenized_results ])
33- return results [0 ]
34-
35+ return results [0 ], time .time () - start
3536
3637def read_files (path ):
3738 with open (path , "r" , encoding = "utf-8" ) as f :
@@ -49,11 +50,12 @@ def read_files(path):
4950max_lenght = 500
5051val_examples = [[es_sentence , en_sentence ] for es_sentence , en_sentence in zip (es_validation_data , en_validation_data ) if len (es_sentence ) <= max_lenght and len (en_sentence ) <= max_lenght ]
5152
52- translator = PtEnTranslator ("Models/09_translation_transformer/202307241748 /model.onnx" )
53+ translator = PtEnTranslator ("Models/09_translation_transformer/202308241514 /model.onnx" )
5354
5455val_dataset = []
5556for es , en in val_examples :
56- results = translator .predict (es )
57- print (en )
57+ results , duration = translator .predict (es )
58+ print (en . lower () )
5859 print (results )
60+ print (duration )
5961 print ()
0 commit comments