|
| 1 | + |
| 2 | +.. _supported_ops: |
| 3 | + |
| 4 | +================================= |
| 5 | +Operators Supported |
| 6 | +================================= |
| 7 | + |
| 8 | + |
| 9 | +Operators Currently Supported Through Converters |
| 10 | +------------------------------------------------- |
| 11 | + |
| 12 | +- aten::_convolution(Tensor input, Tensor weight, Tensor? bias, int[] stride, int[] padding, int[] dilation, bool transposed, int[] output_padding, int groups, bool benchmark, bool deterministic, bool cudnn_enabled, bool allow_tf32) -> (Tensor) |
| 13 | +- aten::_convolution.deprecated(Tensor input, Tensor weight, Tensor? bias, int[] stride, int[] padding, int[] dilation, bool transposed, int[] output_padding, int groups, bool benchmark, bool deterministic, bool cudnn_enabled) -> (Tensor) |
| 14 | +- aten::abs(Tensor self) -> (Tensor) |
| 15 | +- aten::acos(Tensor self) -> (Tensor) |
| 16 | +- aten::acosh(Tensor self) -> (Tensor) |
| 17 | +- aten::adaptive_avg_pool2d(Tensor self, int[2] output_size) -> (Tensor) |
| 18 | +- aten::add.Scalar(Tensor self, Scalar other, Scalar alpha=1) -> (Tensor) |
| 19 | +- aten::add.Tensor(Tensor self, Tensor other, Scalar alpha=1) -> (Tensor) |
| 20 | +- aten::add_.Tensor(Tensor(a!) self, Tensor other, *, Scalar alpha=1) -> (Tensor(a!)) |
| 21 | +- aten::asin(Tensor self) -> (Tensor) |
| 22 | +- aten::asinh(Tensor self) -> (Tensor) |
| 23 | +- aten::atan(Tensor self) -> (Tensor) |
| 24 | +- aten::atanh(Tensor self) -> (Tensor) |
| 25 | +- aten::avg_pool1d(Tensor self, int[1] kernel_size, int[1] stride=[], int[1] padding=[0], bool ceil_mode=False, bool count_include_pad=True) -> (Tensor) |
| 26 | +- aten::avg_pool2d(Tensor self, int[2] kernel_size, int[2] stride=[], int[2] padding=[0, 0], bool ceil_mode=False, bool count_include_pad=True, int? divisor_override=None) -> (Tensor) |
| 27 | +- aten::avg_pool3d(Tensor self, int[3] kernel_size, int[3] stride=[], int[3] padding=[], bool ceil_mode=False, bool count_include_pad=True, int? divisor_override=None) -> (Tensor) |
| 28 | +- aten::batch_norm(Tensor input, Tensor? gamma, Tensor? beta, Tensor? mean, Tensor? var, bool training, float momentum, float eps, bool cudnn_enabled) -> (Tensor) |
| 29 | +- aten::cat(Tensor[] tensors, int dim=0) -> (Tensor) |
| 30 | +- aten::ceil(Tensor self) -> (Tensor) |
| 31 | +- aten::clamp(Tensor self, Scalar? min=None, Scalar? max=None) -> (Tensor) |
| 32 | +- aten::cos(Tensor self) -> (Tensor) |
| 33 | +- aten::cosh(Tensor self) -> (Tensor) |
| 34 | +- aten::div.Scalar(Tensor self, Scalar other) -> (Tensor) |
| 35 | +- aten::div.Tensor(Tensor self, Tensor other) -> (Tensor) |
| 36 | +- aten::div_.Scalar(Tensor(a!) self, Scalar other) -> (Tensor(a!)) |
| 37 | +- aten::div_.Tensor(Tensor(a!) self, Tensor other) -> (Tensor(a!)) |
| 38 | +- aten::embedding(Tensor weight, Tensor indices, int padding_idx=-1, bool scale_grad_by_freq=False, bool sparse=False) -> (Tensor) |
| 39 | +- aten::eq.Scalar(Tensor self, Scalar other) -> (Tensor) |
| 40 | +- aten::eq.Tensor(Tensor self, Tensor other) -> (Tensor) |
| 41 | +- aten::erf(Tensor self) -> (Tensor) |
| 42 | +- aten::exp(Tensor self) -> (Tensor) |
| 43 | +- aten::expand(Tensor(a) self, int[] size, *, bool implicit=False) -> (Tensor(a)) |
| 44 | +- aten::expand_as(Tensor(a) self, Tensor other) -> (Tensor(a)) |
| 45 | +- aten::flatten.using_ints(Tensor self, int start_dim=0, int end_dim=-1) -> (Tensor) |
| 46 | +- aten::floor(Tensor self) -> (Tensor) |
| 47 | +- aten::floor_divide(Tensor self, Tensor other) -> (Tensor) |
| 48 | +- aten::floor_divide.Scalar(Tensor self, Scalar other) -> (Tensor) |
| 49 | +- aten::ge.Scalar(Tensor self, Scalar other) -> (Tensor) |
| 50 | +- aten::ge.Tensor(Tensor self, Tensor other) -> (Tensor) |
| 51 | +- aten::gt.Scalar(Tensor self, Scalar other) -> (Tensor) |
| 52 | +- aten::gt.Tensor(Tensor self, Tensor other) -> (Tensor) |
| 53 | +- aten::hardtanh(Tensor self, Scalar min_val=-1, Scalar max_val=1) -> (Tensor) |
| 54 | +- aten::hardtanh_(Tensor(a!) self, Scalar min_val=-1, Scalar max_val=1) -> (Tensor(a!)) |
| 55 | +- aten::le.Scalar(Tensor self, Scalar other) -> (Tensor) |
| 56 | +- aten::le.Tensor(Tensor self, Tensor other) -> (Tensor) |
| 57 | +- aten::leaky_relu(Tensor self, Scalar negative_slope=0.01) -> (Tensor) |
| 58 | +- aten::leaky_relu_(Tensor(a!) self, Scalar negative_slope=0.01) -> (Tensor(a!)) |
| 59 | +- aten::linear(Tensor input, Tensor weight, Tensor? bias=None) -> (Tensor) |
| 60 | +- aten::log(Tensor self) -> (Tensor) |
| 61 | +- aten::lstm_cell(Tensor input, Tensor[] hx, Tensor w_ih, Tensor w_hh, Tensor? b_ih=None, Tensor? b_hh=None) -> (Tensor, Tensor) |
| 62 | +- aten::lt.Scalar(Tensor self, Scalar other) -> (Tensor) |
| 63 | +- aten::lt.Tensor(Tensor self, Tensor other) -> (Tensor) |
| 64 | +- aten::matmul(Tensor self, Tensor other) -> (Tensor) |
| 65 | +- aten::max(Tensor self) -> (Tensor) |
| 66 | +- aten::max.other(Tensor self, Tensor other) -> (Tensor) |
| 67 | +- aten::max_pool1d(Tensor self, int[1] kernel_size, int[1] stride=[], int[1] padding=[], int[1] dilation=[], bool ceil_mode=False) -> (Tensor) |
| 68 | +- aten::max_pool2d(Tensor self, int[2] kernel_size, int[2] stride=[], int[2] padding=[0, 0], int[2] dilation=[1, 1], bool ceil_mode=False) -> (Tensor) |
| 69 | +- aten::max_pool3d(Tensor self, int[3] kernel_size, int[3] stride=[], int[3] padding=[], int[3] dilation=[], bool ceil_mode=False) -> (Tensor) |
| 70 | +- aten::mean(Tensor self, *, int? dtype=None) -> (Tensor) |
| 71 | +- aten::mean.dim(Tensor self, int[] dim, bool keepdim=False, *, int? dtype=None) -> (Tensor) |
| 72 | +- aten::min(Tensor self) -> (Tensor) |
| 73 | +- aten::min.other(Tensor self, Tensor other) -> (Tensor) |
| 74 | +- aten::mul.Tensor(Tensor self, Tensor other) -> (Tensor) |
| 75 | +- aten::mul_.Tensor(Tensor(a!) self, Tensor other) -> (Tensor(a!)) |
| 76 | +- aten::narrow(Tensor(a) self, int dim, int start, int length) -> (Tensor(a)) |
| 77 | +- aten::narrow.Tensor(Tensor(a) self, int dim, Tensor start, int length) -> (Tensor(a)) |
| 78 | +- aten::ne.Scalar(Tensor self, Scalar other) -> (Tensor) |
| 79 | +- aten::ne.Tensor(Tensor self, Tensor other) -> (Tensor) |
| 80 | +- aten::neg(Tensor self) -> (Tensor) |
| 81 | +- aten::permute(Tensor(a) self, int[] dims) -> (Tensor(a)) |
| 82 | +- aten::pow.Tensor_Scalar(Tensor self, Scalar exponent) -> (Tensor) |
| 83 | +- aten::pow.Tensor_Tensor(Tensor self, Tensor exponent) -> (Tensor) |
| 84 | +- aten::prelu(Tensor self, Tensor weight) -> (Tensor) |
| 85 | +- aten::prod(Tensor self, *, int? dtype=None) -> (Tensor) |
| 86 | +- aten::prod.dim_int(Tensor self, int dim, bool keepdim=False, *, int? dtype=None) -> (Tensor) |
| 87 | +- aten::reciprocal(Tensor self) -> (Tensor) |
| 88 | +- aten::relu(Tensor input) -> (Tensor) |
| 89 | +- aten::relu_(Tensor(a!) self) -> (Tensor(a!)) |
| 90 | +- aten::repeat(Tensor self, int[] repeats) -> (Tensor) |
| 91 | +- aten::reshape(Tensor self, int[] shape) -> (Tensor) |
| 92 | +- aten::rsub.Scalar(Tensor self, Scalar other, Scalar alpha=1) -> (Tensor) |
| 93 | +- aten::rsub.Tensor(Tensor self, Tensor other, Scalar alpha=1) -> (Tensor) |
| 94 | +- aten::select.int(Tensor(a) self, int dim, int index) -> (Tensor(a)) |
| 95 | +- aten::sigmoid(Tensor input) -> (Tensor) |
| 96 | +- aten::sigmoid_(Tensor(a!) self) -> (Tensor(a!)) |
| 97 | +- aten::sin(Tensor self) -> (Tensor) |
| 98 | +- aten::sinh(Tensor self) -> (Tensor) |
| 99 | +- aten::slice.Tensor(Tensor(a) self, int dim=0, int start=0, int end=9223372036854775807, int step=1) -> (Tensor(a)) |
| 100 | +- aten::softmax.int(Tensor self, int dim, int? dtype=None) -> (Tensor) |
| 101 | +- aten::split(Tensor self, int[] split_sizes, int dim=0) -> (Tensor[]) |
| 102 | +- aten::split.Tensor(Tensor(a) self, int split_size, int dim=0) -> (Tensor[]) |
| 103 | +- aten::split_with_sizes(Tensor(a) self, int[] split_sizes, int dim=0) -> (Tensor[]) |
| 104 | +- aten::sqrt(Tensor self) -> (Tensor) |
| 105 | +- aten::squeeze.dim(Tensor(a) self, int dim) -> (Tensor(a)) |
| 106 | +- aten::stack(Tensor[] tensors, int dim=0) -> (Tensor) |
| 107 | +- aten::sub.Tensor(Tensor self, Tensor other, Scalar alpha=1) -> (Tensor) |
| 108 | +- aten::sub_.Tensor(Tensor(a!) self, Tensor other, *, Scalar alpha=1) -> (Tensor(a!)) |
| 109 | +- aten::sum(Tensor self, *, int? dtype=None) -> (Tensor) |
| 110 | +- aten::sum.dim_IntList(Tensor self, int[1] dim, bool keepdim=False, *, int? dtype=None) -> (Tensor) |
| 111 | +- aten::tan(Tensor self) -> (Tensor) |
| 112 | +- aten::tanh(Tensor input) -> (Tensor) |
| 113 | +- aten::tanh_(Tensor(a!) self) -> (Tensor(a!)) |
| 114 | +- aten::topk(Tensor self, int k, int dim=-1, bool largest=True, bool sorted=True) -> (Tensor values, Tensor indices) |
| 115 | +- aten::unsqueeze(Tensor(a) self, int dim) -> (Tensor(a)) |
| 116 | +- aten::upsample_bilinear2d(Tensor self, int[2] output_size, bool align_corners, float? scales_h=None, float? scales_w=None) -> (Tensor) |
| 117 | +- aten::upsample_bilinear2d.vec(Tensor input, int[]? output_size, bool align_corners, float[]? scale_factors) -> (Tensor) |
| 118 | +- aten::upsample_linear1d(Tensor self, int[1] output_size, bool align_corners, float? scales=None) -> (Tensor) |
| 119 | +- aten::upsample_linear1d.vec(Tensor input, int[]? output_size, bool align_corners, float[]? scale_factors) -> (Tensor) |
| 120 | +- aten::upsample_nearest1d(Tensor self, int[1] output_size, float? scales=None) -> (Tensor) |
| 121 | +- aten::upsample_nearest1d.vec(Tensor input, int[]? output_size, float[]? scale_factors) -> (Tensor) |
| 122 | +- aten::upsample_nearest2d(Tensor self, int[2] output_size, float? scales_h=None, float? scales_w=None) -> (Tensor) |
| 123 | +- aten::upsample_nearest2d.vec(Tensor input, int[]? output_size, float[]? scale_factors) -> (Tensor) |
| 124 | +- aten::upsample_nearest3d(Tensor self, int[3] output_size, float? scales_d=None, float? scales_h=None, float? scales_w=None) -> (Tensor) |
| 125 | +- aten::upsample_nearest3d.vec(Tensor input, int[]? output_size, float[]? scale_factors) -> (Tensor) |
| 126 | +- aten::upsample_trilinear3d(Tensor self, int[3] output_size, bool align_corners, float? scales_d=None, float? scales_h=None, float? scales_w=None) -> (Tensor) |
| 127 | +- aten::upsample_trilinear3d.vec(Tensor input, int[]? output_size, bool align_corners, float[]? scale_factors) -> (Tensor) |
| 128 | +- aten::view(Tensor(a) self, int[] size) -> (Tensor(a)) |
| 129 | +- trt::const(Tensor self) -> (Tensor) |
| 130 | +
|
| 131 | +Operators Currently Supported Through Evaluators |
| 132 | +------------------------------------------------- |
| 133 | + |
| 134 | +- aten::Bool.float(float b) -> (bool) |
| 135 | +- aten::Bool.int(int a) -> (bool) |
| 136 | +- aten::Float.Scalar(Scalar a) -> float |
| 137 | +- aten::Float.bool(bool a) -> float |
| 138 | +- aten::Float.int(int a) -> float |
| 139 | +- aten::__and__(int a, int b) -> (bool) |
| 140 | +- aten::__getitem__.t(t[](a) list, int idx) -> (t(*)) |
| 141 | +- aten::__is__(t1 self, t2 obj) -> bool |
| 142 | +- aten::__isnot__(t1 self, t2 obj) -> bool |
| 143 | +- aten::__not__(bool self) -> bool |
| 144 | +- aten::__or__(int a, int b) -> (bool) |
| 145 | +- aten::__round_to_zero_floordiv(int a, int b) -> (int) |
| 146 | +- aten::__xor__(int a, int b) -> (bool) |
| 147 | +- aten::add.float(float a, float b) -> (float) |
| 148 | +- aten::add.int(int a, int b) -> (int) |
| 149 | +- aten::add_.t(t[](a!) self, t[] b) -> (t[]) |
| 150 | +- aten::append.t(t[](a!) self, t(c -> *) el) -> (t[](a!)) |
| 151 | +- aten::dim(Tensor self) -> int |
| 152 | +- aten::div.float(float a, float b) -> (float) |
| 153 | +- aten::div.int(int a, int b) -> (float) |
| 154 | +- aten::eq.bool(bool a, bool b) -> (bool) |
| 155 | +- aten::eq.float(float a, float b) -> (bool) |
| 156 | +- aten::eq.float_int(float a, int b) -> (bool) |
| 157 | +- aten::eq.int(int a, int b) -> (bool) |
| 158 | +- aten::eq.int_float(int a, float b) -> (bool) |
| 159 | +- aten::floor.float(float a) -> (int) |
| 160 | +- aten::floordiv.float(float a, float b) -> (int) |
| 161 | +- aten::floordiv.int(int a, int b) -> (int) |
| 162 | +- aten::ge.bool(bool a, bool b) -> (bool) |
| 163 | +- aten::ge.float(float a, float b) -> (bool) |
| 164 | +- aten::ge.float_int(float a, int b) -> (bool) |
| 165 | +- aten::ge.int(int a, int b) -> (bool) |
| 166 | +- aten::ge.int_float(int a, float b) -> (bool) |
| 167 | +- aten::gt.bool(bool a, bool b) -> (bool) |
| 168 | +- aten::gt.float(float a, float b) -> (bool) |
| 169 | +- aten::gt.float_int(float a, int b) -> (bool) |
| 170 | +- aten::gt.int(int a, int b) -> (bool) |
| 171 | +- aten::gt.int_float(int a, float b) -> (bool) |
| 172 | +- aten::le.bool(bool a, bool b) -> (bool) |
| 173 | +- aten::le.float(float a, float b) -> (bool) |
| 174 | +- aten::le.float_int(float a, int b) -> (bool) |
| 175 | +- aten::le.int(int a, int b) -> (bool) |
| 176 | +- aten::le.int_float(int a, float b) -> (bool) |
| 177 | +- aten::len.t(t[] a) -> (int) |
| 178 | +- aten::lt.bool(bool a, bool b) -> (bool) |
| 179 | +- aten::lt.float(float a, float b) -> (bool) |
| 180 | +- aten::lt.float_int(float a, int b) -> (bool) |
| 181 | +- aten::lt.int(int a, int b) -> (bool) |
| 182 | +- aten::lt.int_float(int a, float b) -> (bool) |
| 183 | +- aten::mul.float(float a, float b) -> (float) |
| 184 | +- aten::mul.int(int a, int b) -> (int) |
| 185 | +- aten::ne.bool(bool a, bool b) -> (bool) |
| 186 | +- aten::ne.float(float a, float b) -> (bool) |
| 187 | +- aten::ne.float_int(float a, int b) -> (bool) |
| 188 | +- aten::ne.int(int a, int b) -> (bool) |
| 189 | +- aten::ne.int_float(int a, float b) -> (bool) |
| 190 | +- aten::neg.int(int a) -> (int) |
| 191 | +- aten::numel(Tensor self) -> int |
| 192 | +- aten::size(Tensor self) -> (int[]) |
| 193 | +- aten::size.int(Tensor self, int dim) -> (int) |
| 194 | +- aten::slice.t(t[] l, int start, int end=9223372036854775807, int step=1) -> (t[]) |
| 195 | +- aten::sub.float(float a, float b) -> (float) |
| 196 | +- aten::sub.int(int a, int b) -> (int) |
| 197 | +- prim::max.bool(bool a, bool b) -> (bool) |
| 198 | +- prim::max.float(float a, float b) -> (bool) |
| 199 | +- prim::max.float_int(float a, int b) -> (bool) |
| 200 | +- prim::max.int(int a, int b) -> (bool) |
| 201 | +- prim::max.int_float(int a, float b) -> (bool) |
| 202 | +- prim::max.self_int(int[] self) -> (int) |
| 203 | +- prim::min.bool(bool a, bool b) -> (bool) |
| 204 | +- prim::min.float(float a, float b) -> (bool) |
| 205 | +- prim::min.float_int(float a, int b) -> (bool) |
| 206 | +- prim::min.int(int a, int b) -> (bool) |
| 207 | +- prim::min.int_float(int a, float b) -> (bool) |
| 208 | +- prim::min.self_int(int[] self) -> (int) |
| 209 | +- prim::shape(Tensor a) -> (int[]) |
0 commit comments