Skip to content

Commit 5a0f7a5

Browse files
committed
chore!: Downgrade default TensorRT and cuDNN issue to address cuDNN
incompatablity with PyTorch 1.5.0. TensorRT 7.1 and cuDNN 8 are still supported provided user is using a version of PyTorch compiled with cuDNN 8 / cuBLAS 11 Signed-off-by: Naren Dasan <[email protected]> Signed-off-by: Naren Dasan <[email protected]>
1 parent 81f09a4 commit 5a0f7a5

File tree

3 files changed

+16
-12
lines changed

3 files changed

+16
-12
lines changed

README.md

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -75,8 +75,8 @@ torch.jit.save(trt_ts_module, "trt_torchscript_module.ts")
7575
- Bazel 3.3.1
7676
- Libtorch 1.5.1
7777
- CUDA 10.2
78-
- cuDNN 8.0.1
79-
- TensorRT 7.1.3
78+
- cuDNN 7.6.5 (by default, cuDNN 8 supported with compatable PyTorch build)
79+
- TensorRT 7.0.0 (by default, TensorRT 7.1 supported with compatable PyTorch build)
8080

8181
## Prebuilt Binaries and Wheel files
8282

WORKSPACE

Lines changed: 6 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -54,7 +54,7 @@ http_archive(
5454
build_file = "@//third_party/libtorch:BUILD",
5555
strip_prefix = "libtorch",
5656
urls = ["https://download.pytorch.org/libtorch/cu102/libtorch-cxx11-abi-shared-with-deps-1.5.1.zip"],
57-
sha256 = "0efdd4e709ab11088fa75f0501c19b0e294404231442bab1d1fb953924feb6b5"
57+
sha256 = "cf0691493d05062fe3239cf76773bae4c5124f4b039050dbdd291c652af3ab2a"
5858
)
5959

6060
http_archive(
@@ -71,18 +71,18 @@ http_archive(
7171

7272
http_archive(
7373
name = "cudnn",
74-
urls = ["https://developer.nvidia.com/compute/machine-learning/cudnn/secure/8.0.1.13/10.2_20200626/cudnn-10.2-linux-x64-v8.0.1.13.tgz",],
74+
urls = ["https://developer.nvidia.com/compute/machine-learning/cudnn/secure/7.6.5.32/Production/10.2_20191118/cudnn-10.2-linux-x64-v7.6.5.32.tgz",],
7575
build_file = "@//third_party/cudnn/archive:BUILD",
76-
sha256 = "0c106ec84f199a0fbcf1199010166986da732f9b0907768c9ac5ea5b120772db",
76+
sha256 = "600267f2caaed2fd58eb214ba669d8ea35f396a7d19b94822e6b36f9f7088c20",
7777
strip_prefix = "cuda"
7878
)
7979

8080
http_archive(
8181
name = "tensorrt",
82-
urls = ["https://developer.nvidia.com/compute/machine-learning/tensorrt/secure/7.1/tars/TensorRT-7.1.3.4.Ubuntu-18.04.x86_64-gnu.cuda-10.2.cudnn8.0.tar.gz",],
82+
urls = ["https://developer.nvidia.com/compute/machine-learning/tensorrt/secure/7.0/7.0.0.11/tars/TensorRT-7.0.0.11.Ubuntu-18.04.x86_64-gnu.cuda-10.2.cudnn7.6.tar.gz",],
8383
build_file = "@//third_party/tensorrt/archive:BUILD",
84-
sha256 = "9205bed204e2ae7aafd2e01cce0f21309e281e18d5bfd7172ef8541771539d41",
85-
strip_prefix = "TensorRT-7.1.3.4"
84+
sha256 = "c7d73b2585b18aae68b740249efa8c8ba5ae852abe9a023720595432a8eb4efd",
85+
strip_prefix = "TensorRT-7.0.0.11"
8686
)
8787

8888
####################################################################################

docsrc/tutorials/installation.rst

Lines changed: 8 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -26,13 +26,13 @@ You can install the python package using
2626
.. code-block:: sh
2727
2828
# Python 3.5
29-
pip3 install https://github.com/NVIDIA/TRTorch/releases/download/v0.0.2/trtorch-0.0.2-cp35-cp35m-linux_x86_64.whl
29+
pip3 install https://github.com/NVIDIA/TRTorch/releases/download/v0.0.3/trtorch-0.0.3-cp35-cp35m-linux_x86_64.whl
3030
# Python 3.6
31-
pip3 install https://github.com/NVIDIA/TRTorch/releases/download/v0.0.2/trtorch-0.0.2-cp36-cp36m-linux_x86_64.whl
31+
pip3 install https://github.com/NVIDIA/TRTorch/releases/download/v0.0.3/trtorch-0.0.3-cp36-cp36m-linux_x86_64.whl
3232
# Python 3.7
33-
pip3 install https://github.com/NVIDIA/TRTorch/releases/download/v0.0.2/trtorch-0.0.2-cp37-cp37m-linux_x86_64.whl
33+
pip3 install https://github.com/NVIDIA/TRTorch/releases/download/v0.0.3/trtorch-0.0.3-cp37-cp37m-linux_x86_64.whl
3434
# Python 3.8
35-
pip3 install https://github.com/NVIDIA/TRTorch/releases/download/v0.0.2/trtorch-0.0.2-cp38-cp38-linux_x86_64.whl
35+
pip3 install https://github.com/NVIDIA/TRTorch/releases/download/v0.0.3/trtorch-0.0.3-cp38-cp38-linux_x86_64.whl
3636
3737
.. _bin-dist:
3838

@@ -73,6 +73,10 @@ the CUDA driver installed and the container must have CUDA)
7373

7474
The correct LibTorch version will be pulled down for you by bazel.
7575

76+
NOTE: For best compatability with official PyTorch, use TensorRT 7.0 and cuDNN 7.6 however TRTorch itself supports
77+
TensorRT 7.1 and cuDNN 8.0 for usecases such as using NVIDIA compiled distributions of PyTorch that use cuDNN 8
78+
e.g. aarch64 or custom compiled version of PyTorch that use cuDNN 8.
79+
7680
You then have two compilation options:
7781

7882
.. _build-from-archive:

0 commit comments

Comments
 (0)