You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: README.md
+4-4Lines changed: 4 additions & 4 deletions
Display the source diff
Display the rich diff
Original file line number
Diff line number
Diff line change
@@ -5,13 +5,13 @@
5
5
6
6
> Ahead of Time (AOT) compiling for PyTorch JIT and FX
7
7
8
-
Torch-TensorRT is a compiler for PyTorch/TorchScript/FX, targeting NVIDIA GPUs via NVIDIA's TensorRT Deep Learning Optimizer and Runtime. Unlike PyTorch's Just-In-Time (JIT) compiler, Torch-TensorRT is an Ahead-of-Time (AOT) compiler, meaning that before you deploy your TorchScript code, you go through an explicit compile step to convert a standard TorchScript or FX program into an module targeting a TensorRT engine. Torch-TensorRT operates as a PyTorch extention and compiles modules that integrate into the JIT runtime seamlessly. After compilation using the optimized graph should feel no different than running a TorchScript module. You also have access to TensorRT's suite of configurations at compile time, so you are able to specify operating precision (FP32/FP16/INT8) and other settings for your module.
8
+
Torch-TensorRT is a compiler for PyTorch/TorchScript/FX, targeting NVIDIA GPUs via NVIDIA's TensorRT Deep Learning Optimizer and Runtime. Unlike PyTorch's Just-In-Time (JIT) compiler, Torch-TensorRT is an Ahead-of-Time (AOT) compiler, meaning that before you deploy your TorchScript code, you go through an explicit compile step to convert a standard TorchScript or FX program into an module targeting a TensorRT engine. Torch-TensorRT operates as a PyTorch extension and compiles modules that integrate into the JIT runtime seamlessly. After compilation using the optimized graph should feel no different than running a TorchScript module. You also have access to TensorRT's suite of configurations at compile time, so you are able to specify operating precision (FP32/FP16/INT8) and other settings for your module.
-[Pre-built Docker Container](https://catalog.ngc.nvidia.com/orgs/nvidia/containers/pytorch). To use this container, make an NGC account and sign in to NVIDIA's registry with an API key. Refer to [this guide](https://docs.nvidia.com/ngc/ngc-catalog-user-guide/index.html#registering-activating-ngc-account) for the same.
16
16
17
17
## NVIDIA NGC Container
@@ -44,7 +44,7 @@ If you would like to build outside a docker container, please follow the section
// Size of input_dtypes should match number of inputs to the network.
49
49
// If input_dtypes is not set, default precision follows traditional PyT / TRT rules
50
50
auto input = torch_tensorrt::Input(dims, torch::kHalf);
@@ -305,7 +305,7 @@ Supported Python versions:
305
305
306
306
### In Torch-TensorRT?
307
307
308
-
Thanks for wanting to contribute! There are two main ways to handle supporting a new op. Either you can write a converter for the op from scratch and register it in the NodeConverterRegistry or if you can map the op to a set of ops that already have converters you can write a graph rewrite pass which will replace your new op with an equivalent subgraph of supported ops. Its preferred to use graph rewriting because then we do not need to maintain a large library of op converters. Also do look at the various op support trackers in the [issues](https://github.com/pytorch/TensorRT/issues) for information on the support status of various operators.
308
+
Thanks for wanting to contribute! There are two main ways to handle supporting a new op. Either you can write a converter for the op from scratch and register it in the NodeConverterRegistry or if you can map the op to a set of ops that already have converters you can write a graph rewrite pass which will replace your new op with an equivalent subgraph of supported ops. It's preferred to use graph rewriting because then we do not need to maintain a large library of op converters. Also do look at the various op support trackers in the [issues](https://github.com/pytorch/TensorRT/issues) for information on the support status of various operators.
inputs (List[Union(torch_tensorrt.Input, torch.Tensor)]): **Required** List of specifications of input shape, dtype and memory layout for inputs to the module. This argument is required. Input Sizes can be specified as torch sizes, tuples or lists. dtypes can be specified using
463
+
inputs (Optional[Sequence[torch_tensorrt.Input | torch.Tensor]]): **Required** List of specifications of input shape, dtype and memory layout for inputs to the module. This argument is required. Input Sizes can be specified as torch sizes, tuples or lists. dtypes can be specified using
465
464
torch datatypes or torch_tensorrt datatypes and you can use either torch devices or the torch_tensorrt device type enum
torch.randn((1, 3, 224, 244)) # Use an example tensor and let torch_tensorrt infer settings
478
477
]
479
-
480
-
method_name (str): Name of method to convert
481
-
input_signature Union(List, Tuple, torch_tensorrt.Input, torch.Tensor): A formatted collection of input specifications for the module. Input Sizes can be specified as torch sizes, tuples or lists. dtypes can be specified using
482
-
torch datatypes or torch_tensorrt datatypes and you can use either torch devices or the torch_tensorrt device type enum to select device type. **This API should be considered beta-level stable and may change in the future** ::
0 commit comments