@@ -116,7 +116,7 @@ def acc_ops_conv1d(
116116 # right now
117117 if kwargs ["bias" ] is not None and not isinstance (kwargs ["bias" ], torch .Tensor ):
118118 raise RuntimeError (
119- f"linear { name } has bias of type { type (kwargs ['bias' ])} , Expect Optional[Tenosr ]"
119+ f"linear { name } has bias of type { type (kwargs ['bias' ])} , Expect Optional[Tensor ]"
120120 )
121121 bias = to_numpy (kwargs ["bias" ]) # type: ignore[arg-type]
122122 if bias is not None :
@@ -146,7 +146,7 @@ def acc_ops_conv1d(
146146 else :
147147 if not isinstance (kwargs ["weight" ], torch .Tensor ):
148148 raise RuntimeError (
149- f"linear { name } has weight of type { type (kwargs ['weight' ])} , Expect Optional[Tenosr ]"
149+ f"linear { name } has weight of type { type (kwargs ['weight' ])} , Expect Optional[Tensor ]"
150150 )
151151 weight = to_numpy (weight )
152152 weight = np .expand_dims (weight , - 1 )
@@ -202,11 +202,11 @@ def acc_ops_convnd(
202202 # right now
203203 if kwargs ["bias" ] is not None and not isinstance (kwargs ["bias" ], torch .Tensor ):
204204 raise RuntimeError (
205- f"linear { name } has bias of type { type (kwargs ['bias' ])} , Expect Optional[Tenosr ]"
205+ f"linear { name } has bias of type { type (kwargs ['bias' ])} , Expect Optional[Tensor ]"
206206 )
207207 bias = to_numpy (kwargs ["bias" ]) # type: ignore[arg-type]
208208
209- if network .has_explicit_precision :
209+ if network .has_explicit_precision or isinstance ( kwargs [ "weight" ], TRTTensor ) :
210210 weight = get_trt_tensor (network , kwargs ["weight" ], f"{ name } _weight" )
211211 weight_shape = tuple (kwargs ["weight" ].shape ) # type: ignore[union-attr]
212212 # will need to use uninitialized weight and set it later to support
@@ -224,7 +224,7 @@ def acc_ops_convnd(
224224 else :
225225 if not isinstance (kwargs ["weight" ], torch .Tensor ):
226226 raise RuntimeError (
227- f"linear { name } has weight of type { type (kwargs ['weight' ])} , Expect Optional[Tenosr ]"
227+ f"linear { name } has weight of type { type (kwargs ['weight' ])} , Expect Optional[Tensor ]"
228228 )
229229 weight = to_numpy (kwargs ["weight" ])
230230 layer = network .add_convolution_nd (
@@ -276,7 +276,7 @@ def acc_ops_conv_transposend(
276276 )
277277 bias = to_numpy (kwargs ["bias" ]) # type: ignore[arg-type]
278278
279- if network .has_explicit_precision :
279+ if network .has_explicit_precision or isinstance ( kwargs [ "weight" ], TRTTensor ) :
280280 weight = get_trt_tensor (network , kwargs ["weight" ], f"{ name } _weight" )
281281 weight_shape = tuple (kwargs ["weight" ].shape ) # type: ignore[union-attr]
282282 # will need to use uninitialized weight and set it later to support
0 commit comments