Skip to content

Commit fdd7d42

Browse files
committed
chore: Remove disabled test
Signed-off-by: Dheeraj Peri <[email protected]>
1 parent c284518 commit fdd7d42

File tree

1 file changed

+57
-104
lines changed

1 file changed

+57
-104
lines changed

tests/core/partitioning/test_fallback_graph_output.cpp

Lines changed: 57 additions & 104 deletions
Original file line numberDiff line numberDiff line change
@@ -7,110 +7,63 @@
77

88
#ifndef DISABLE_TEST_IN_CI
99

10-
// TEST(Partitioning, ComputeResNet50FallbackGraphCorrectly) {
11-
// torch::jit::script::Module mod;
12-
// try {
13-
// mod = torch::jit::load("tests/modules/resnet50_traced.jit.pt");
14-
// } catch (const c10::Error& e) {
15-
// std::cerr << "error loading the model\n";
16-
// return;
17-
// }
18-
//
19-
// const std::vector<std::vector<int64_t>> input_shapes = {{1, 3, 224, 224}};
20-
// std::vector<torch::jit::IValue> jit_inputs_ivalues;
21-
// std::vector<torch::jit::IValue> trt_inputs_ivalues;
22-
// for (auto in_shape : input_shapes) {
23-
// auto in = at::randint(5, in_shape, {at::kCUDA});
24-
// jit_inputs_ivalues.push_back(in.clone());
25-
// trt_inputs_ivalues.push_back(in.clone());
26-
// }
27-
//
28-
// std::vector<torch_tensorrt::core::ir::Input> input_ranges{torch_tensorrt::core::ir::Input({1, 3, 224, 224})};
29-
//
30-
// torch_tensorrt::core::CompileSpec cfg(input_ranges);
31-
// cfg.partition_info.enabled = true;
32-
// cfg.partition_info.forced_fallback_operators.push_back("aten::add");
33-
//
34-
// auto jit_results = mod.forward(jit_inputs_ivalues).toTensor();
35-
// auto trt_mod = torch_tensorrt::core::CompileGraph(mod, cfg);
36-
// auto trt_results = trt_mod.forward(trt_inputs_ivalues).toTensor();
37-
// ASSERT_TRUE(torch_tensorrt::tests::util::almostEqual(jit_results, trt_results, 2e-6));
38-
// }
39-
//
40-
// TEST(Partitioning, ComputeMobileNetFallbackGraphCorrectly) {
41-
// torch::jit::script::Module mod;
42-
// try {
43-
// mod = torch::jit::load("tests/modules/mobilenet_v2_traced.jit.pt");
44-
// } catch (const c10::Error& e) {
45-
// std::cerr << "error loading the model\n";
46-
// return;
47-
// }
48-
//
49-
// const std::vector<std::vector<int64_t>> input_shapes = {{1, 3, 224, 224}};
50-
// std::vector<torch::jit::IValue> jit_inputs_ivalues;
51-
// std::vector<torch::jit::IValue> trt_inputs_ivalues;
52-
// for (auto in_shape : input_shapes) {
53-
// auto in = at::randint(5, in_shape, {at::kCUDA});
54-
// jit_inputs_ivalues.push_back(in.clone());
55-
// trt_inputs_ivalues.push_back(in.clone());
56-
// }
57-
//
58-
// std::vector<torch_tensorrt::core::ir::Input> input_ranges{torch_tensorrt::core::ir::Input({1, 3, 224, 224})};
59-
// auto g = mod.get_method("forward").graph();
60-
// torch_tensorrt::core::CompileSpec cfg(input_ranges);
61-
// cfg.partition_info.enabled = true;
62-
// cfg.partition_info.forced_fallback_operators.push_back("aten::hardtanh");
63-
//
64-
// auto jit_results = mod.forward(jit_inputs_ivalues).toTensor();
65-
// auto trt_mod = torch_tensorrt::core::CompileGraph(mod, cfg);
66-
// auto trt_results = trt_mod.forward(trt_inputs_ivalues).toTensor();
67-
// ASSERT_TRUE(torch_tensorrt::tests::util::almostEqual(jit_results, trt_results, 2e-6));
68-
// }
10+
TEST(Partitioning, ComputeResNet50FallbackGraphCorrectly) {
11+
torch::jit::script::Module mod;
12+
try {
13+
mod = torch::jit::load("tests/modules/resnet50_traced.jit.pt");
14+
} catch (const c10::Error& e) {
15+
std::cerr << "error loading the model\n";
16+
return;
17+
}
6918

70-
/*
71-
The following test is ambigious and somehow works in TRT 8.2, which might have a bug.
72-
This FP16 model has inputs and weights configured to be FP16 but the builder precision
73-
is set to FP32. So during shape analysis, when the Pyt/TRT segments (are run as pytorch
74-
modules), the inputs of each segments are configured to be FP16 but after TRT conversion
75-
and inference, TRT segments generate float outputs which become float inputs to following
76-
segments. Hence type check fails during runtime at
77-
https://github.com/pytorch/TensorRT/blob/master/core/runtime/execute_engine.cpp#L91
78-
TO DO: Resolve type system check in partitioning
79-
*/
19+
const std::vector<std::vector<int64_t>> input_shapes = {{1, 3, 224, 224}};
20+
std::vector<torch::jit::IValue> jit_inputs_ivalues;
21+
std::vector<torch::jit::IValue> trt_inputs_ivalues;
22+
for (auto in_shape : input_shapes) {
23+
auto in = at::randint(5, in_shape, {at::kCUDA});
24+
jit_inputs_ivalues.push_back(in.clone());
25+
trt_inputs_ivalues.push_back(in.clone());
26+
}
8027

81-
// TEST(Partitioning, ComputeResNet50HalfFallbackGraphCorrectly) {
82-
// torch::jit::script::Module mod;
83-
// try {
84-
// mod = torch::jit::load("tests/modules/resnet50_traced.jit.pt");
85-
// } catch (const c10::Error& e) {
86-
// std::cerr << "error loading the model\n";
87-
// return;
88-
// }
89-
//
90-
// mod.to(torch::kHalf);
91-
//
92-
// const std::vector<std::vector<int64_t>> input_shapes = {{1, 3, 224, 224}};
93-
// std::vector<torch::jit::IValue> jit_inputs_ivalues;
94-
// std::vector<torch::jit::IValue> trt_inputs_ivalues;
95-
// for (auto in_shape : input_shapes) {
96-
// auto in = at::randint(5, in_shape, {at::kCUDA}).to(torch::kHalf);
97-
// jit_inputs_ivalues.push_back(in.clone());
98-
// trt_inputs_ivalues.push_back(in.clone());
99-
// }
100-
//
101-
// auto in_shape = torch_tensorrt::core::ir::Input({1, 3, 224, 224});
102-
// in_shape.dtype = nvinfer1::DataType::kHALF;
103-
//
104-
// std::vector<torch_tensorrt::core::ir::Input> input_ranges({in_shape});
105-
// auto g = mod.get_method("forward").graph();
106-
// torch_tensorrt::core::CompileSpec cfg(input_ranges);
107-
// cfg.partition_info.enabled = true;
108-
// cfg.partition_info.forced_fallback_operators.push_back("aten::add");
109-
//
110-
// auto jit_results = mod.forward(jit_inputs_ivalues).toTensor();
111-
// auto trt_mod = torch_tensorrt::core::CompileGraph(mod, cfg);
112-
// auto trt_results = trt_mod.forward(trt_inputs_ivalues).toTensor();
113-
// // Lower threshold because FP16
114-
// ASSERT_TRUE(torch_tensorrt::tests::util::almostEqual(jit_results, trt_results, 2e-1));
115-
// }
28+
std::vector<torch_tensorrt::core::ir::Input> input_ranges{torch_tensorrt::core::ir::Input({1, 3, 224, 224})};
29+
30+
torch_tensorrt::core::CompileSpec cfg(input_ranges);
31+
cfg.partition_info.enabled = true;
32+
cfg.partition_info.forced_fallback_operators.push_back("aten::add");
33+
34+
auto jit_results = mod.forward(jit_inputs_ivalues).toTensor();
35+
auto trt_mod = torch_tensorrt::core::CompileGraph(mod, cfg);
36+
auto trt_results = trt_mod.forward(trt_inputs_ivalues).toTensor();
37+
ASSERT_TRUE(torch_tensorrt::tests::util::almostEqual(jit_results, trt_results, 2e-6));
38+
}
39+
40+
TEST(Partitioning, ComputeMobileNetFallbackGraphCorrectly) {
41+
torch::jit::script::Module mod;
42+
try {
43+
mod = torch::jit::load("tests/modules/mobilenet_v2_traced.jit.pt");
44+
} catch (const c10::Error& e) {
45+
std::cerr << "error loading the model\n";
46+
return;
47+
}
48+
49+
const std::vector<std::vector<int64_t>> input_shapes = {{1, 3, 224, 224}};
50+
std::vector<torch::jit::IValue> jit_inputs_ivalues;
51+
std::vector<torch::jit::IValue> trt_inputs_ivalues;
52+
for (auto in_shape : input_shapes) {
53+
auto in = at::randint(5, in_shape, {at::kCUDA});
54+
jit_inputs_ivalues.push_back(in.clone());
55+
trt_inputs_ivalues.push_back(in.clone());
56+
}
57+
58+
std::vector<torch_tensorrt::core::ir::Input> input_ranges{torch_tensorrt::core::ir::Input({1, 3, 224, 224})};
59+
auto g = mod.get_method("forward").graph();
60+
torch_tensorrt::core::CompileSpec cfg(input_ranges);
61+
cfg.partition_info.enabled = true;
62+
cfg.partition_info.forced_fallback_operators.push_back("aten::hardtanh");
63+
64+
auto jit_results = mod.forward(jit_inputs_ivalues).toTensor();
65+
auto trt_mod = torch_tensorrt::core::CompileGraph(mod, cfg);
66+
auto trt_results = trt_mod.forward(trt_inputs_ivalues).toTensor();
67+
ASSERT_TRUE(torch_tensorrt::tests::util::almostEqual(jit_results, trt_results, 2e-6));
68+
}
11669
#endif

0 commit comments

Comments
 (0)