|
7 | 7 |
|
8 | 8 | #ifndef DISABLE_TEST_IN_CI
|
9 | 9 |
|
10 |
| -// TEST(Partitioning, ComputeResNet50FallbackGraphCorrectly) { |
11 |
| -// torch::jit::script::Module mod; |
12 |
| -// try { |
13 |
| -// mod = torch::jit::load("tests/modules/resnet50_traced.jit.pt"); |
14 |
| -// } catch (const c10::Error& e) { |
15 |
| -// std::cerr << "error loading the model\n"; |
16 |
| -// return; |
17 |
| -// } |
18 |
| -// |
19 |
| -// const std::vector<std::vector<int64_t>> input_shapes = {{1, 3, 224, 224}}; |
20 |
| -// std::vector<torch::jit::IValue> jit_inputs_ivalues; |
21 |
| -// std::vector<torch::jit::IValue> trt_inputs_ivalues; |
22 |
| -// for (auto in_shape : input_shapes) { |
23 |
| -// auto in = at::randint(5, in_shape, {at::kCUDA}); |
24 |
| -// jit_inputs_ivalues.push_back(in.clone()); |
25 |
| -// trt_inputs_ivalues.push_back(in.clone()); |
26 |
| -// } |
27 |
| -// |
28 |
| -// std::vector<torch_tensorrt::core::ir::Input> input_ranges{torch_tensorrt::core::ir::Input({1, 3, 224, 224})}; |
29 |
| -// |
30 |
| -// torch_tensorrt::core::CompileSpec cfg(input_ranges); |
31 |
| -// cfg.partition_info.enabled = true; |
32 |
| -// cfg.partition_info.forced_fallback_operators.push_back("aten::add"); |
33 |
| -// |
34 |
| -// auto jit_results = mod.forward(jit_inputs_ivalues).toTensor(); |
35 |
| -// auto trt_mod = torch_tensorrt::core::CompileGraph(mod, cfg); |
36 |
| -// auto trt_results = trt_mod.forward(trt_inputs_ivalues).toTensor(); |
37 |
| -// ASSERT_TRUE(torch_tensorrt::tests::util::almostEqual(jit_results, trt_results, 2e-6)); |
38 |
| -// } |
39 |
| -// |
40 |
| -// TEST(Partitioning, ComputeMobileNetFallbackGraphCorrectly) { |
41 |
| -// torch::jit::script::Module mod; |
42 |
| -// try { |
43 |
| -// mod = torch::jit::load("tests/modules/mobilenet_v2_traced.jit.pt"); |
44 |
| -// } catch (const c10::Error& e) { |
45 |
| -// std::cerr << "error loading the model\n"; |
46 |
| -// return; |
47 |
| -// } |
48 |
| -// |
49 |
| -// const std::vector<std::vector<int64_t>> input_shapes = {{1, 3, 224, 224}}; |
50 |
| -// std::vector<torch::jit::IValue> jit_inputs_ivalues; |
51 |
| -// std::vector<torch::jit::IValue> trt_inputs_ivalues; |
52 |
| -// for (auto in_shape : input_shapes) { |
53 |
| -// auto in = at::randint(5, in_shape, {at::kCUDA}); |
54 |
| -// jit_inputs_ivalues.push_back(in.clone()); |
55 |
| -// trt_inputs_ivalues.push_back(in.clone()); |
56 |
| -// } |
57 |
| -// |
58 |
| -// std::vector<torch_tensorrt::core::ir::Input> input_ranges{torch_tensorrt::core::ir::Input({1, 3, 224, 224})}; |
59 |
| -// auto g = mod.get_method("forward").graph(); |
60 |
| -// torch_tensorrt::core::CompileSpec cfg(input_ranges); |
61 |
| -// cfg.partition_info.enabled = true; |
62 |
| -// cfg.partition_info.forced_fallback_operators.push_back("aten::hardtanh"); |
63 |
| -// |
64 |
| -// auto jit_results = mod.forward(jit_inputs_ivalues).toTensor(); |
65 |
| -// auto trt_mod = torch_tensorrt::core::CompileGraph(mod, cfg); |
66 |
| -// auto trt_results = trt_mod.forward(trt_inputs_ivalues).toTensor(); |
67 |
| -// ASSERT_TRUE(torch_tensorrt::tests::util::almostEqual(jit_results, trt_results, 2e-6)); |
68 |
| -// } |
| 10 | +TEST(Partitioning, ComputeResNet50FallbackGraphCorrectly) { |
| 11 | + torch::jit::script::Module mod; |
| 12 | + try { |
| 13 | + mod = torch::jit::load("tests/modules/resnet50_traced.jit.pt"); |
| 14 | + } catch (const c10::Error& e) { |
| 15 | + std::cerr << "error loading the model\n"; |
| 16 | + return; |
| 17 | + } |
69 | 18 |
|
70 |
| -/* |
71 |
| -The following test is ambigious and somehow works in TRT 8.2, which might have a bug. |
72 |
| -This FP16 model has inputs and weights configured to be FP16 but the builder precision |
73 |
| -is set to FP32. So during shape analysis, when the Pyt/TRT segments (are run as pytorch |
74 |
| -modules), the inputs of each segments are configured to be FP16 but after TRT conversion |
75 |
| -and inference, TRT segments generate float outputs which become float inputs to following |
76 |
| -segments. Hence type check fails during runtime at |
77 |
| -https://github.com/pytorch/TensorRT/blob/master/core/runtime/execute_engine.cpp#L91 |
78 |
| -TO DO: Resolve type system check in partitioning |
79 |
| -*/ |
| 19 | + const std::vector<std::vector<int64_t>> input_shapes = {{1, 3, 224, 224}}; |
| 20 | + std::vector<torch::jit::IValue> jit_inputs_ivalues; |
| 21 | + std::vector<torch::jit::IValue> trt_inputs_ivalues; |
| 22 | + for (auto in_shape : input_shapes) { |
| 23 | + auto in = at::randint(5, in_shape, {at::kCUDA}); |
| 24 | + jit_inputs_ivalues.push_back(in.clone()); |
| 25 | + trt_inputs_ivalues.push_back(in.clone()); |
| 26 | + } |
80 | 27 |
|
81 |
| -// TEST(Partitioning, ComputeResNet50HalfFallbackGraphCorrectly) { |
82 |
| -// torch::jit::script::Module mod; |
83 |
| -// try { |
84 |
| -// mod = torch::jit::load("tests/modules/resnet50_traced.jit.pt"); |
85 |
| -// } catch (const c10::Error& e) { |
86 |
| -// std::cerr << "error loading the model\n"; |
87 |
| -// return; |
88 |
| -// } |
89 |
| -// |
90 |
| -// mod.to(torch::kHalf); |
91 |
| -// |
92 |
| -// const std::vector<std::vector<int64_t>> input_shapes = {{1, 3, 224, 224}}; |
93 |
| -// std::vector<torch::jit::IValue> jit_inputs_ivalues; |
94 |
| -// std::vector<torch::jit::IValue> trt_inputs_ivalues; |
95 |
| -// for (auto in_shape : input_shapes) { |
96 |
| -// auto in = at::randint(5, in_shape, {at::kCUDA}).to(torch::kHalf); |
97 |
| -// jit_inputs_ivalues.push_back(in.clone()); |
98 |
| -// trt_inputs_ivalues.push_back(in.clone()); |
99 |
| -// } |
100 |
| -// |
101 |
| -// auto in_shape = torch_tensorrt::core::ir::Input({1, 3, 224, 224}); |
102 |
| -// in_shape.dtype = nvinfer1::DataType::kHALF; |
103 |
| -// |
104 |
| -// std::vector<torch_tensorrt::core::ir::Input> input_ranges({in_shape}); |
105 |
| -// auto g = mod.get_method("forward").graph(); |
106 |
| -// torch_tensorrt::core::CompileSpec cfg(input_ranges); |
107 |
| -// cfg.partition_info.enabled = true; |
108 |
| -// cfg.partition_info.forced_fallback_operators.push_back("aten::add"); |
109 |
| -// |
110 |
| -// auto jit_results = mod.forward(jit_inputs_ivalues).toTensor(); |
111 |
| -// auto trt_mod = torch_tensorrt::core::CompileGraph(mod, cfg); |
112 |
| -// auto trt_results = trt_mod.forward(trt_inputs_ivalues).toTensor(); |
113 |
| -// // Lower threshold because FP16 |
114 |
| -// ASSERT_TRUE(torch_tensorrt::tests::util::almostEqual(jit_results, trt_results, 2e-1)); |
115 |
| -// } |
| 28 | + std::vector<torch_tensorrt::core::ir::Input> input_ranges{torch_tensorrt::core::ir::Input({1, 3, 224, 224})}; |
| 29 | + |
| 30 | + torch_tensorrt::core::CompileSpec cfg(input_ranges); |
| 31 | + cfg.partition_info.enabled = true; |
| 32 | + cfg.partition_info.forced_fallback_operators.push_back("aten::add"); |
| 33 | + |
| 34 | + auto jit_results = mod.forward(jit_inputs_ivalues).toTensor(); |
| 35 | + auto trt_mod = torch_tensorrt::core::CompileGraph(mod, cfg); |
| 36 | + auto trt_results = trt_mod.forward(trt_inputs_ivalues).toTensor(); |
| 37 | + ASSERT_TRUE(torch_tensorrt::tests::util::almostEqual(jit_results, trt_results, 2e-6)); |
| 38 | +} |
| 39 | + |
| 40 | +TEST(Partitioning, ComputeMobileNetFallbackGraphCorrectly) { |
| 41 | + torch::jit::script::Module mod; |
| 42 | + try { |
| 43 | + mod = torch::jit::load("tests/modules/mobilenet_v2_traced.jit.pt"); |
| 44 | + } catch (const c10::Error& e) { |
| 45 | + std::cerr << "error loading the model\n"; |
| 46 | + return; |
| 47 | + } |
| 48 | + |
| 49 | + const std::vector<std::vector<int64_t>> input_shapes = {{1, 3, 224, 224}}; |
| 50 | + std::vector<torch::jit::IValue> jit_inputs_ivalues; |
| 51 | + std::vector<torch::jit::IValue> trt_inputs_ivalues; |
| 52 | + for (auto in_shape : input_shapes) { |
| 53 | + auto in = at::randint(5, in_shape, {at::kCUDA}); |
| 54 | + jit_inputs_ivalues.push_back(in.clone()); |
| 55 | + trt_inputs_ivalues.push_back(in.clone()); |
| 56 | + } |
| 57 | + |
| 58 | + std::vector<torch_tensorrt::core::ir::Input> input_ranges{torch_tensorrt::core::ir::Input({1, 3, 224, 224})}; |
| 59 | + auto g = mod.get_method("forward").graph(); |
| 60 | + torch_tensorrt::core::CompileSpec cfg(input_ranges); |
| 61 | + cfg.partition_info.enabled = true; |
| 62 | + cfg.partition_info.forced_fallback_operators.push_back("aten::hardtanh"); |
| 63 | + |
| 64 | + auto jit_results = mod.forward(jit_inputs_ivalues).toTensor(); |
| 65 | + auto trt_mod = torch_tensorrt::core::CompileGraph(mod, cfg); |
| 66 | + auto trt_results = trt_mod.forward(trt_inputs_ivalues).toTensor(); |
| 67 | + ASSERT_TRUE(torch_tensorrt::tests::util::almostEqual(jit_results, trt_results, 2e-6)); |
| 68 | +} |
116 | 69 | #endif
|
0 commit comments