-
Notifications
You must be signed in to change notification settings - Fork 370
Description
Bug Description
python examples/apps/flux_demo.py --dtype fp16 --low_vram_mode --load_or_save save
WARNING:torch_tensorrt.dynamo.runtime._MutableTorchTensorRTModule:Trying to move the original PyTorch model. This will cause CPU offloading failing and increase GPU memory usage.If this is absolute necessary, please call module.pytorch_model.to(...)
The model is still on the original device.
Traceback (most recent call last):
File "C:\Users\local-lanl\git\py310\TensorRT\examples\apps\flux_demo.py", line 319, in
main(args)
File "C:\Users\local-lanl\git\py310\TensorRT\examples\apps\flux_demo.py", line 270, in main
torch_tensorrt.MutableTorchTensorRTModule.save(trt_gm, "mutable_trt_gm.pkl")
File "C:\Users\local-lanl\git\venv_py310\lib\site-packages\torch_tensorrt\dynamo\runtime_MutableTorchTensorRTModule.py", line 709, in save
torch.save(module, path, pickle_protocol=4)
File "C:\Users\local-lanl\git\venv_py310\lib\site-packages\torch\serialization.py", line 967, in save
_save(
File "C:\Users\local-lanl\git\venv_py310\lib\site-packages\torch\serialization.py", line 1213, in _save
pickler.dump(obj)
MemoryError
To Reproduce
Steps to reproduce the behavior:
Expected behavior
Environment
Build information about Torch-TensorRT can be found by turning on debug messages
- Torch-TensorRT Version (e.g. 1.0.0):
- PyTorch Version (e.g. 1.0):
- CPU Architecture:
- OS (e.g., Linux):
- How you installed PyTorch (
conda
,pip
,libtorch
, source): - Build command you used (if compiling from source):
- Are you using local sources or building from archives:
- Python version:
- CUDA version:
- GPU models and configuration:
- Any other relevant information: