|
1 | | -#include <torch/script.h> |
2 | | -#include <torch/torch.h> |
| 1 | +#include <torch/csrc/stable/library.h> |
| 2 | +#include <torch/csrc/stable/ops.h> |
| 3 | +#include <torch/csrc/stable/tensor.h> |
| 4 | +#include <torch/headeronly/core/Dispatch_v2.h> |
| 5 | +#include <torch/headeronly/core/TensorAccessor.h> |
3 | 6 |
|
4 | 7 | namespace { |
5 | 8 |
|
| 9 | +using torch::stable::Tensor; |
| 10 | + |
| 11 | +template <typename T, size_t N> |
| 12 | +using TensorAccessor = torch::headeronly::HeaderOnlyTensorAccessor<T, N>; |
| 13 | + |
| 14 | +// TODO: eliminate accessor<T, N>(t) in favor of t.accessor<T, N> |
| 15 | +// after Tensor::accessor is supported in stable ABI |
| 16 | +template <typename T, size_t N> |
| 17 | +inline TensorAccessor<T, N> accessor(Tensor t) { |
| 18 | + return TensorAccessor<T, N>( |
| 19 | + reinterpret_cast<T*>(t.data_ptr()), t.sizes().data(), t.strides().data()); |
| 20 | +} |
| 21 | + |
6 | 22 | template <typename scalar_t> |
7 | 23 | void overdrive_cpu_kernel( |
8 | | - at::TensorAccessor<scalar_t, 2> waveform_accessor, |
9 | | - at::TensorAccessor<scalar_t, 2> temp_accessor, |
10 | | - at::TensorAccessor<scalar_t, 1> last_in_accessor, |
11 | | - at::TensorAccessor<scalar_t, 1> last_out_accessor, |
12 | | - at::TensorAccessor<scalar_t, 2> output_waveform_accessor) { |
| 24 | + TensorAccessor<scalar_t, 2> waveform_accessor, |
| 25 | + TensorAccessor<scalar_t, 2> temp_accessor, |
| 26 | + TensorAccessor<scalar_t, 1> last_in_accessor, |
| 27 | + TensorAccessor<scalar_t, 1> last_out_accessor, |
| 28 | + TensorAccessor<scalar_t, 2> output_waveform_accessor) { |
13 | 29 | int64_t n_frames = waveform_accessor.size(1); |
14 | 30 | int64_t n_channels = waveform_accessor.size(0); |
15 | 31 |
|
16 | | - at::parallel_for(0, n_channels, 1, [&](int64_t begin, int64_t end) { |
17 | | - for (int64_t i_channel = begin; i_channel < end; ++i_channel) { |
18 | | - for (int64_t i_frame = 0; i_frame < n_frames; ++i_frame) { |
19 | | - last_out_accessor[i_channel] = temp_accessor[i_channel][i_frame] - |
20 | | - last_in_accessor[i_channel] + 0.995 * last_out_accessor[i_channel]; |
21 | | - last_in_accessor[i_channel] = temp_accessor[i_channel][i_frame]; |
22 | | - output_waveform_accessor[i_channel][i_frame] = |
23 | | - waveform_accessor[i_channel][i_frame] * 0.5 + |
24 | | - last_out_accessor[i_channel] * 0.75; |
25 | | - } |
26 | | - } |
27 | | - }); |
| 32 | + torch::stable::parallel_for( |
| 33 | + 0, n_channels, 1, [&](int64_t begin, int64_t end) { |
| 34 | + for (int64_t i_channel = begin; i_channel < end; ++i_channel) { |
| 35 | + for (int64_t i_frame = 0; i_frame < n_frames; ++i_frame) { |
| 36 | + last_out_accessor[i_channel] = temp_accessor[i_channel][i_frame] - |
| 37 | + last_in_accessor[i_channel] + |
| 38 | + 0.995 * last_out_accessor[i_channel]; |
| 39 | + last_in_accessor[i_channel] = temp_accessor[i_channel][i_frame]; |
| 40 | + output_waveform_accessor[i_channel][i_frame] = |
| 41 | + waveform_accessor[i_channel][i_frame] * 0.5 + |
| 42 | + last_out_accessor[i_channel] * 0.75; |
| 43 | + } |
| 44 | + } |
| 45 | + }); |
28 | 46 | } |
29 | 47 |
|
30 | | -void overdrive_core_loop_cpu( |
31 | | - at::Tensor& waveform, |
32 | | - at::Tensor& temp, |
33 | | - at::Tensor& last_in, |
34 | | - at::Tensor& last_out, |
35 | | - at::Tensor& output_waveform) { |
36 | | - AT_DISPATCH_FLOATING_TYPES(waveform.scalar_type(), "overdrive_cpu", ([&] { |
37 | | - overdrive_cpu_kernel<scalar_t>( |
38 | | - waveform.accessor<scalar_t, 2>(), |
39 | | - temp.accessor<scalar_t, 2>(), |
40 | | - last_in.accessor<scalar_t, 1>(), |
41 | | - last_out.accessor<scalar_t, 1>(), |
42 | | - output_waveform.accessor<scalar_t, 2>()); |
43 | | - })); |
| 48 | +std::tuple<Tensor, Tensor, Tensor> overdrive_core_loop_cpu( |
| 49 | + Tensor waveform, |
| 50 | + Tensor temp, |
| 51 | + Tensor last_in, |
| 52 | + Tensor last_out, |
| 53 | + Tensor output_waveform) { |
| 54 | + THO_DISPATCH_V2( |
| 55 | + waveform.scalar_type(), |
| 56 | + "overdrive_cpu", |
| 57 | + AT_WRAP([&] { |
| 58 | + overdrive_cpu_kernel<scalar_t>( |
| 59 | + accessor<scalar_t, 2>(waveform), |
| 60 | + accessor<scalar_t, 2>(temp), |
| 61 | + accessor<scalar_t, 1>(last_in), |
| 62 | + accessor<scalar_t, 1>(last_out), |
| 63 | + accessor<scalar_t, 2>(output_waveform)); |
| 64 | + }), |
| 65 | + AT_FLOATING_TYPES); |
| 66 | + return std::make_tuple(last_in, last_out, output_waveform); |
44 | 67 | } |
45 | 68 |
|
46 | 69 | } // namespace |
47 | 70 |
|
48 | | -// Note: We want to avoid using "catch-all" kernel. |
49 | | -// The following registration should be replaced with CPU specific registration. |
50 | | -TORCH_LIBRARY_FRAGMENT(torchaudio, m) { |
51 | | - m.def("torchaudio::_overdrive_core_loop", &overdrive_core_loop_cpu); |
| 71 | +STABLE_TORCH_LIBRARY_FRAGMENT(torchaudio, m) { |
| 72 | + m.def( |
| 73 | + "_overdrive_core_loop(Tensor waveform, Tensor temp, Tensor(a!) last_in, Tensor(b!) last_out, Tensor(c!) output_waveform) -> (Tensor(a!), Tensor(b!), Tensor(c!))"); |
| 74 | +} |
| 75 | + |
| 76 | +STABLE_TORCH_LIBRARY_IMPL(torchaudio, CPU, m) { |
| 77 | + m.impl("_overdrive_core_loop", TORCH_BOX(&overdrive_core_loop_cpu)); |
52 | 78 | } |
0 commit comments