|
| 1 | +import unittest |
| 2 | + |
| 3 | +import torch |
| 4 | +from executorch.backends.test.harness.error_statistics import ErrorStatistics |
| 5 | + |
| 6 | + |
| 7 | +class ErrorStatisticsTests(unittest.TestCase): |
| 8 | + def test_error_stats_simple(self): |
| 9 | + tensor1 = torch.tensor([1, 2, 3, 4]) |
| 10 | + tensor2 = torch.tensor([2, 2, 2, 5]) |
| 11 | + |
| 12 | + error_stats = ErrorStatistics.from_tensors(tensor1, tensor2) |
| 13 | + |
| 14 | + # Check actual tensor statistics |
| 15 | + self.assertEqual(error_stats.actual_stats.shape, torch.Size([4])) |
| 16 | + self.assertEqual(error_stats.actual_stats.numel, 4) |
| 17 | + self.assertEqual(error_stats.actual_stats.median, 2.5) |
| 18 | + self.assertEqual(error_stats.actual_stats.mean, 2.5) |
| 19 | + self.assertEqual(error_stats.actual_stats.max, 4) |
| 20 | + self.assertEqual(error_stats.actual_stats.min, 1) |
| 21 | + |
| 22 | + # Check reference tensor statistics |
| 23 | + self.assertEqual(error_stats.reference_stats.shape, torch.Size([4])) |
| 24 | + self.assertEqual(error_stats.reference_stats.numel, 4) |
| 25 | + self.assertEqual(error_stats.reference_stats.median, 2.0) |
| 26 | + self.assertEqual(error_stats.reference_stats.mean, 2.75) |
| 27 | + self.assertEqual(error_stats.reference_stats.max, 5) |
| 28 | + self.assertEqual(error_stats.reference_stats.min, 2) |
| 29 | + |
| 30 | + # Check error statistics |
| 31 | + self.assertAlmostEqual(error_stats.error_l2_norm, 1.732, places=3) |
| 32 | + self.assertEqual(error_stats.error_mae, 0.75) |
| 33 | + self.assertEqual(error_stats.error_max, 1.0) |
| 34 | + self.assertEqual(error_stats.error_msd, -0.25) |
| 35 | + self.assertAlmostEqual(error_stats.sqnr, 10.0, places=3) |
| 36 | + |
| 37 | + def test_error_stats_different_shapes(self): |
| 38 | + # Create tensors with different shapes |
| 39 | + tensor1 = torch.tensor([1, 2, 3, 4]) |
| 40 | + tensor2 = torch.tensor([[2, 3], [4, 5]]) |
| 41 | + |
| 42 | + error_stats = ErrorStatistics.from_tensors(tensor1, tensor2) |
| 43 | + |
| 44 | + # Check actual tensor statistics |
| 45 | + self.assertEqual(error_stats.actual_stats.shape, torch.Size([4])) |
| 46 | + self.assertEqual(error_stats.actual_stats.numel, 4) |
| 47 | + self.assertEqual(error_stats.actual_stats.median, 2.5) |
| 48 | + self.assertEqual(error_stats.actual_stats.mean, 2.5) |
| 49 | + self.assertEqual(error_stats.actual_stats.max, 4) |
| 50 | + self.assertEqual(error_stats.actual_stats.min, 1) |
| 51 | + |
| 52 | + # Check reference tensor statistics |
| 53 | + self.assertEqual(error_stats.reference_stats.shape, torch.Size([2, 2])) |
| 54 | + self.assertEqual(error_stats.reference_stats.numel, 4) |
| 55 | + self.assertEqual(error_stats.reference_stats.median, 3.5) |
| 56 | + self.assertEqual(error_stats.reference_stats.mean, 3.5) |
| 57 | + self.assertEqual(error_stats.reference_stats.max, 5) |
| 58 | + self.assertEqual(error_stats.reference_stats.min, 2) |
| 59 | + |
| 60 | + # Check that all error values are None when shapes differ |
| 61 | + self.assertIsNone(error_stats.error_l2_norm) |
| 62 | + self.assertIsNone(error_stats.error_mae) |
| 63 | + self.assertIsNone(error_stats.error_max) |
| 64 | + self.assertIsNone(error_stats.error_msd) |
| 65 | + self.assertIsNone(error_stats.sqnr) |
0 commit comments