|
| 1 | +# (c) Meta Platforms, Inc. and affiliates. Confidential and proprietary. |
| 2 | + |
| 3 | +# pyre-strict |
| 4 | + |
| 5 | +from typing import Callable, Optional, Tuple, Union |
| 6 | + |
| 7 | +import torch |
| 8 | + |
| 9 | +from executorch.backends.test.compliance_suite import ( |
| 10 | + dtype_test, |
| 11 | + operator_test, |
| 12 | + OperatorTest, |
| 13 | +) |
| 14 | + |
| 15 | +class ModelWithSize(torch.nn.Module): |
| 16 | + def __init__( |
| 17 | + self, |
| 18 | + size: Optional[Tuple[int, int]] = None, |
| 19 | + align_corners: Optional[bool] = None, |
| 20 | + ): |
| 21 | + super().__init__() |
| 22 | + self.size = size |
| 23 | + self.align_corners = align_corners |
| 24 | + |
| 25 | + def forward(self, x): |
| 26 | + return torch.nn.functional.interpolate(x, size=self.size, mode='bilinear', align_corners=self.align_corners) |
| 27 | + |
| 28 | +class ModelWithScale(torch.nn.Module): |
| 29 | + def __init__( |
| 30 | + self, |
| 31 | + scale_factor: Union[float, Tuple[float, float]] = 2.0, |
| 32 | + align_corners: Optional[bool] = None, |
| 33 | + ): |
| 34 | + super().__init__() |
| 35 | + self.scale_factor = scale_factor |
| 36 | + self.align_corners = align_corners |
| 37 | + |
| 38 | + def forward(self, x): |
| 39 | + return torch.nn.functional.interpolate(x, scale_factor=self.scale_factor, mode='bilinear', align_corners=self.align_corners) |
| 40 | + |
| 41 | +@operator_test |
| 42 | +class TestUpsampleBilinear2d(OperatorTest): |
| 43 | + @dtype_test |
| 44 | + def test_upsample_bilinear2d_dtype(self, dtype, tester_factory: Callable) -> None: |
| 45 | + # Input shape: (batch_size, channels, height, width) |
| 46 | + model = ModelWithSize(size=(10, 10), align_corners=False).to(dtype) |
| 47 | + self._test_op(model, (torch.rand(2, 3, 5, 5).to(dtype),), tester_factory) |
| 48 | + |
| 49 | + def test_upsample_bilinear2d_basic(self, tester_factory: Callable) -> None: |
| 50 | + # Basic test with default parameters |
| 51 | + self._test_op(ModelWithSize(size=(10, 10), align_corners=False), (torch.randn(2, 3, 5, 5),), tester_factory) |
| 52 | + self._test_op(ModelWithSize(size=(10, 10), align_corners=True), (torch.randn(2, 3, 5, 5),), tester_factory) |
| 53 | + |
| 54 | + def test_upsample_bilinear2d_sizes(self, tester_factory: Callable) -> None: |
| 55 | + # Test with different input and output sizes |
| 56 | + |
| 57 | + # Small input, larger output |
| 58 | + self._test_op(ModelWithSize(size=(8, 8), align_corners=False), (torch.randn(1, 2, 4, 4),), tester_factory) |
| 59 | + self._test_op(ModelWithSize(size=(8, 8), align_corners=True), (torch.randn(1, 2, 4, 4),), tester_factory) |
| 60 | + |
| 61 | + # Larger input, even larger output |
| 62 | + self._test_op(ModelWithSize(size=(16, 16), align_corners=False), (torch.randn(1, 2, 8, 8),), tester_factory) |
| 63 | + self._test_op(ModelWithSize(size=(16, 16), align_corners=True), (torch.randn(1, 2, 8, 8),), tester_factory) |
| 64 | + |
| 65 | + # Different height and width |
| 66 | + self._test_op(ModelWithSize(size=(16, 8), align_corners=False), (torch.randn(1, 2, 8, 4),), tester_factory) |
| 67 | + self._test_op(ModelWithSize(size=(16, 8), align_corners=True), (torch.randn(1, 2, 8, 4),), tester_factory) |
| 68 | + |
| 69 | + # Asymmetric upsampling |
| 70 | + self._test_op(ModelWithSize(size=(20, 10), align_corners=False), (torch.randn(1, 2, 5, 5),), tester_factory) |
| 71 | + self._test_op(ModelWithSize(size=(20, 10), align_corners=True), (torch.randn(1, 2, 5, 5),), tester_factory) |
| 72 | + |
| 73 | + def test_upsample_bilinear2d_scale_factors(self, tester_factory: Callable) -> None: |
| 74 | + # Test with different scale factors |
| 75 | + |
| 76 | + # Scale by 2 |
| 77 | + self._test_op(ModelWithScale(scale_factor=2.0, align_corners=False), (torch.randn(1, 2, 5, 5),), tester_factory) |
| 78 | + self._test_op(ModelWithScale(scale_factor=2.0, align_corners=True), (torch.randn(1, 2, 5, 5),), tester_factory) |
| 79 | + |
| 80 | + # Scale by 3 |
| 81 | + self._test_op(ModelWithScale(scale_factor=3.0, align_corners=False), (torch.randn(1, 2, 5, 5),), tester_factory) |
| 82 | + self._test_op(ModelWithScale(scale_factor=3.0, align_corners=True), (torch.randn(1, 2, 5, 5),), tester_factory) |
| 83 | + |
| 84 | + # Scale by 1.5 |
| 85 | + self._test_op(ModelWithScale(scale_factor=1.5, align_corners=False), (torch.randn(1, 2, 6, 6),), tester_factory) |
| 86 | + self._test_op(ModelWithScale(scale_factor=1.5, align_corners=True), (torch.randn(1, 2, 6, 6),), tester_factory) |
| 87 | + |
| 88 | + # Different scales for height and width |
| 89 | + self._test_op(ModelWithScale(scale_factor=(2.0, 1.5), align_corners=False), (torch.randn(1, 2, 5, 6),), tester_factory) |
| 90 | + self._test_op(ModelWithScale(scale_factor=(2.0, 1.5), align_corners=True), (torch.randn(1, 2, 5, 6),), tester_factory) |
| 91 | + |
| 92 | + def test_upsample_bilinear2d_batch_sizes(self, tester_factory: Callable) -> None: |
| 93 | + # Test with different batch sizes |
| 94 | + self._test_op(ModelWithSize(size=(10, 10), align_corners=False), (torch.randn(1, 3, 5, 5),), tester_factory) |
| 95 | + self._test_op(ModelWithSize(size=(10, 10), align_corners=False), (torch.randn(4, 3, 5, 5),), tester_factory) |
| 96 | + self._test_op(ModelWithSize(size=(10, 10), align_corners=False), (torch.randn(8, 3, 5, 5),), tester_factory) |
| 97 | + |
| 98 | + def test_upsample_bilinear2d_channels(self, tester_factory: Callable) -> None: |
| 99 | + # Test with different numbers of channels |
| 100 | + self._test_op(ModelWithSize(size=(10, 10), align_corners=False), (torch.randn(2, 1, 5, 5),), tester_factory) # Grayscale |
| 101 | + self._test_op(ModelWithSize(size=(10, 10), align_corners=False), (torch.randn(2, 3, 5, 5),), tester_factory) # RGB |
| 102 | + self._test_op(ModelWithSize(size=(10, 10), align_corners=False), (torch.randn(2, 4, 5, 5),), tester_factory) # RGBA |
| 103 | + self._test_op(ModelWithSize(size=(10, 10), align_corners=False), (torch.randn(2, 16, 5, 5),), tester_factory) # Multi-channel |
| 104 | + |
| 105 | + def test_upsample_bilinear2d_same_size(self, tester_factory: Callable) -> None: |
| 106 | + # Test with output size same as input size (should be identity) |
| 107 | + self._test_op(ModelWithSize(size=(5, 5), align_corners=False), (torch.randn(2, 3, 5, 5),), tester_factory) |
| 108 | + self._test_op(ModelWithSize(size=(5, 5), align_corners=True), (torch.randn(2, 3, 5, 5),), tester_factory) |
| 109 | + self._test_op(ModelWithScale(scale_factor=1.0, align_corners=False), (torch.randn(2, 3, 5, 5),), tester_factory) |
| 110 | + self._test_op(ModelWithScale(scale_factor=1.0, align_corners=True), (torch.randn(2, 3, 5, 5),), tester_factory) |
| 111 | + |
| 112 | + def test_upsample_bilinear2d_downsampling(self, tester_factory: Callable) -> None: |
| 113 | + # Test downsampling |
| 114 | + self._test_op(ModelWithSize(size=(4, 4), align_corners=False), (torch.randn(2, 3, 8, 8),), tester_factory) |
| 115 | + self._test_op(ModelWithSize(size=(4, 4), align_corners=True), (torch.randn(2, 3, 8, 8),), tester_factory) |
| 116 | + self._test_op(ModelWithScale(scale_factor=0.5, align_corners=False), (torch.randn(2, 3, 8, 8),), tester_factory) |
| 117 | + self._test_op(ModelWithScale(scale_factor=0.5, align_corners=True), (torch.randn(2, 3, 8, 8),), tester_factory) |
| 118 | + |
| 119 | + # Test with non-integer downsampling factor |
| 120 | + self._test_op(ModelWithScale(scale_factor=0.75, align_corners=False), (torch.randn(2, 3, 8, 8),), tester_factory) |
| 121 | + self._test_op(ModelWithScale(scale_factor=0.75, align_corners=True), (torch.randn(2, 3, 8, 8),), tester_factory) |
| 122 | + |
| 123 | + def test_upsample_bilinear2d_large_scale(self, tester_factory: Callable) -> None: |
| 124 | + # Test with large scale factor |
| 125 | + self._test_op(ModelWithScale(scale_factor=4.0, align_corners=False), (torch.randn(1, 2, 4, 4),), tester_factory) |
| 126 | + self._test_op(ModelWithScale(scale_factor=4.0, align_corners=True), (torch.randn(1, 2, 4, 4),), tester_factory) |
| 127 | + |
| 128 | + def test_upsample_bilinear2d_non_square(self, tester_factory: Callable) -> None: |
| 129 | + # Test with non-square input |
| 130 | + self._test_op(ModelWithSize(size=(10, 20), align_corners=False), (torch.randn(2, 3, 5, 10),), tester_factory) |
| 131 | + self._test_op(ModelWithSize(size=(10, 20), align_corners=True), (torch.randn(2, 3, 5, 10),), tester_factory) |
| 132 | + self._test_op(ModelWithScale(scale_factor=2.0, align_corners=False), (torch.randn(2, 3, 5, 10),), tester_factory) |
| 133 | + self._test_op(ModelWithScale(scale_factor=2.0, align_corners=True), (torch.randn(2, 3, 5, 10),), tester_factory) |
| 134 | + |
| 135 | + def test_upsample_bilinear2d_odd_sizes(self, tester_factory: Callable) -> None: |
| 136 | + # Test with odd input and output sizes (where interpolation behavior might be more noticeable) |
| 137 | + self._test_op(ModelWithSize(size=(9, 9), align_corners=False), (torch.randn(2, 3, 5, 5),), tester_factory) |
| 138 | + self._test_op(ModelWithSize(size=(9, 9), align_corners=True), (torch.randn(2, 3, 5, 5),), tester_factory) |
| 139 | + self._test_op(ModelWithSize(size=(7, 7), align_corners=False), (torch.randn(2, 3, 3, 3),), tester_factory) |
| 140 | + self._test_op(ModelWithSize(size=(7, 7), align_corners=True), (torch.randn(2, 3, 3, 3),), tester_factory) |
| 141 | + self._test_op(ModelWithScale(scale_factor=1.5, align_corners=False), (torch.randn(2, 3, 5, 5),), tester_factory) |
| 142 | + self._test_op(ModelWithScale(scale_factor=1.5, align_corners=True), (torch.randn(2, 3, 5, 5),), tester_factory) |
0 commit comments