|
| 1 | +# Exporting Llama 3.2 1B/3B Instruct to ExecuTorch Vulkan and running on device |
| 2 | + |
| 3 | +This tutorial assumes that you have a working local copy of the ExecuTorch repo, |
| 4 | +and have gone through the steps to install the executorch pip package or have |
| 5 | +installed it by building from source. |
| 6 | + |
| 7 | +This tutorial also assumes that you have the Android SDK tools installed and |
| 8 | +that you are able to connect to an Android device via `adb`. |
| 9 | + |
| 10 | +## Download the Llama 3.2 1B/3B Instruct model checkpoint and tokenizer |
| 11 | + |
| 12 | +The model checkpoint and tokenizer can be downloaded from the |
| 13 | +[Meta Llama website](https://www.llama.com/llama-downloads/). |
| 14 | + |
| 15 | +The model files should be downloaded to `~/.llama/checkpoints/Llama3.2-1B-Instruct`. |
| 16 | + |
| 17 | +## Export the Llama 3.2 1B/3B model |
| 18 | + |
| 19 | +First, navigate to the root of the ExecuTorch repo. |
| 20 | + |
| 21 | +```shell |
| 22 | +# Navigate to executorch root |
| 23 | +cd ~/executorch |
| 24 | +``` |
| 25 | + |
| 26 | +Then, set some environment variables to describe how the model should be |
| 27 | +exported. Feel free to tune the values to your preferences. |
| 28 | + |
| 29 | +```shell |
| 30 | +export LLM_NAME=Llama3.2 && \ |
| 31 | +export LLM_SIZE=1B && \ |
| 32 | +export LLM_SUFFIX="-Instruct" && \ |
| 33 | +export QUANT=8da4w && \ |
| 34 | +export BACKEND=vulkan && \ |
| 35 | +export GROUP_SIZE=64 && \ |
| 36 | +export CONTEXT_LENGTH=2048 |
| 37 | +``` |
| 38 | + |
| 39 | +Then, export the Llama 3.2 1B/3B Instruct model to ExecuTorch Vulkan. Note that |
| 40 | +that `--vulkan-force-fp16` flag is set, which will improve model inference |
| 41 | +latency at the cost of model accuracy. Feel free to remove this flag. |
| 42 | + |
| 43 | +```shell |
| 44 | +mkdir $HOME/.llama/checkpoints/${LLM_NAME}-${LLM_SIZE}${LLM_SUFFIX}/${BACKEND}/ && \ |
| 45 | +python -m examples.models.llama.export_llama \ |
| 46 | + -c $HOME/.llama/checkpoints/${LLM_NAME}-${LLM_SIZE}${LLM_SUFFIX}/consolidated.00.pth \ |
| 47 | + -p $HOME/.llama/checkpoints/${LLM_NAME}-${LLM_SIZE}${LLM_SUFFIX}/params.json \ |
| 48 | + -d fp32 --${BACKEND} --vulkan-force-fp16 \ |
| 49 | + -qmode ${QUANT} -G ${GROUP_SIZE} \ |
| 50 | + --max_seq_length ${CONTEXT_LENGTH} \ |
| 51 | + --max_context_length ${CONTEXT_LENGTH} \ |
| 52 | + -kv --use_sdpa_with_kv_cache \ |
| 53 | + --metadata '{"append_eos_to_prompt": 0, "get_bos_id":128000, "get_eos_ids":[128009, 128001]}' \ |
| 54 | + --model "llama3_2" \ |
| 55 | + --output_name $HOME/.llama/checkpoints/${LLM_NAME}-${LLM_SIZE}${LLM_SUFFIX}/${BACKEND}/llama3_${QUANT}_g${GROUP_SIZE}_c${CONTEXT_LENGTH}.pte |
| 56 | +``` |
| 57 | + |
| 58 | +After exporting the model, push the exported `.pte` file and the tokenizer to |
| 59 | +your device. |
| 60 | + |
| 61 | +```shell |
| 62 | +adb shell mkdir -p /data/local/tmp/Llama3.2-${SIZE}${SUFFIX}/${BACKEND} && \ |
| 63 | +adb push ~/.llama/checkpoints/Llama3.2-${SIZE}${SUFFIX}/tokenizer.model \ |
| 64 | + /data/local/tmp/Llama3.2-${SIZE}${SUFFIX}/tokenizer.model && \ |
| 65 | +adb push ~/.llama/checkpoints/Llama3.2-${SIZE}${SUFFIX}/${BACKEND}/llama3_${QUANT}.pte \ |
| 66 | + /data/local/tmp/Llama3.2-${SIZE}${SUFFIX}/${BACKEND}/llama3_${QUANT}.pte |
| 67 | +``` |
| 68 | + |
| 69 | +## Build Core Executorch Components |
| 70 | + |
| 71 | +To be able to run the `.pte` file on device, first the core libraries, |
| 72 | +including the Vulkan backend, must be compiled for Android. |
| 73 | + |
| 74 | +```shell |
| 75 | +cmake . \ |
| 76 | + -DCMAKE_INSTALL_PREFIX=cmake-out-android-so \ |
| 77 | + -DCMAKE_TOOLCHAIN_FILE=$ANDROID_NDK/build/cmake/android.toolchain.cmake \ |
| 78 | + -DANDROID_SUPPORT_FLEXIBLE_PAGE_SIZES=ON \ |
| 79 | + --preset "android-arm64-v8a" \ |
| 80 | + -DANDROID_PLATFORM=android-28 \ |
| 81 | + -DPYTHON_EXECUTABLE=python \ |
| 82 | + -DCMAKE_BUILD_TYPE=Release \ |
| 83 | + -DEXECUTORCH_PAL_DEFAULT=posix \ |
| 84 | + -DEXECUTORCH_BUILD_LLAMA_JNI=ON \ |
| 85 | + -DEXECUTORCH_BUILD_EXTENSION_NAMED_DATA_MAP=ON \ |
| 86 | + -DEXECUTORCH_BUILD_VULKAN=ON \ |
| 87 | + -DEXECUTORCH_BUILD_TESTS=OFF \ |
| 88 | + -Bcmake-out-android-so && \ |
| 89 | +cmake --build cmake-out-android-so -j16 --target install --config Release |
| 90 | +``` |
| 91 | + |
| 92 | +## Build and push the llama runner binary to Android |
| 93 | + |
| 94 | +Then, build a binary that can be used to run the `.pte` file. |
| 95 | + |
| 96 | +```shell |
| 97 | +cmake examples/models/llama \ |
| 98 | + -DCMAKE_INSTALL_PREFIX=cmake-out-android-so \ |
| 99 | + -DCMAKE_TOOLCHAIN_FILE=$ANDROID_NDK/build/cmake/android.toolchain.cmake \ |
| 100 | + -DANDROID_SUPPORT_FLEXIBLE_PAGE_SIZES=ON \ |
| 101 | + -DEXECUTORCH_ENABLE_LOGGING=ON \ |
| 102 | + -DANDROID_ABI=arm64-v8a \ |
| 103 | + -DANDROID_PLATFORM=android-28 \ |
| 104 | + -DCMAKE_BUILD_TYPE=Release \ |
| 105 | + -DPYTHON_EXECUTABLE=python \ |
| 106 | + -Bcmake-out-android-so/examples/models/llama && \ |
| 107 | +cmake --build cmake-out-android-so/examples/models/llama -j16 --config Release |
| 108 | +``` |
| 109 | + |
| 110 | +Once the binary is built, it can be pushed to your Android device. |
| 111 | + |
| 112 | +```shell |
| 113 | +adb shell mkdir /data/local/tmp/etvk/ && \ |
| 114 | +adb push cmake-out-android-so/examples/models/llama/llama_main /data/local/tmp/etvk/ |
| 115 | +``` |
| 116 | + |
| 117 | +## Execute the llama runner binary |
| 118 | + |
| 119 | +Finally, we can execute the lowered `.pte` file on your device. |
| 120 | + |
| 121 | +```shell |
| 122 | +adb shell /data/local/tmp/etvk/llama_main \ |
| 123 | + --model_path=/data/local/tmp/${LLM_NAME}-${LLM_SIZE}${LLM_SUFFIX}/${BACKEND}/llama3_${QUANT}_g${GROUP_SIZE}_c${CONTEXT_LENGTH}.pte \ |
| 124 | + --tokenizer_path=/data/local/tmp/${LLM_NAME}-${LLM_SIZE}${LLM_SUFFIX}/tokenizer.model \ |
| 125 | + --temperature=0 --seq_len=400 \ |
| 126 | + --prompt=\"\<\|begin_of_text\|\>\<\|start_header_id\|\>system\<\|end_header_id\|\>Write me a short poem.\<\|eot_id\|\>\<\|start_header_id\|\>assistant\<\|end_header_id\|\>\" |
| 127 | +``` |
| 128 | + |
| 129 | +Here is some sample output captured from a Galaxy S24: |
| 130 | + |
| 131 | +```shell |
| 132 | +E tokenizers:hf_tokenizer.cpp:60] Error parsing json file: [json.exception.parse_error.101] parse error at line 1, column 1: syntax error while parsing value - invalid literal; last read: 'I' |
| 133 | +<|begin_of_text|><|start_header_id|>system<|end_header_id|>Write me a short poem.<|eot_id|><|start_header_id|>assistant<|end_header_id|> |
| 134 | + |
| 135 | +Here is a short poem I came up with: |
| 136 | + |
| 137 | +"Moonlight whispers secrets to the night |
| 138 | +A gentle breeze that rustles the light |
| 139 | +The stars up high, a twinkling show |
| 140 | +A peaceful world, where dreams grow slow" |
| 141 | + |
| 142 | +I hope you enjoy it!<|eot_id|> |
| 143 | + |
| 144 | +PyTorchObserver {"prompt_tokens":14,"generated_tokens":54,"model_load_start_ms":1760077800721,"model_load_end_ms":1760077802998,"inference_start_ms":1760077802998,"inference_end_ms":1760077804187,"prompt_eval_end_ms":1760077803162,"first_token_ms":1760077803162,"aggregate_sampling_time_ms":19,"SCALING_FACTOR_UNITS_PER_SECOND":1000} |
| 145 | + Prompt Tokens: 14 Generated Tokens: 54 |
| 146 | + Model Load Time: 2.277000 (seconds) |
| 147 | + Total inference time: 1.189000 (seconds) Rate: 45.416316 (tokens/second) |
| 148 | + Prompt evaluation: 0.164000 (seconds) Rate: 85.365854 (tokens/second) |
| 149 | + Generated 54 tokens: 1.025000 (seconds) Rate: 52.682927 (tokens/second) |
| 150 | + Time to first generated token: 0.164000 (seconds) |
| 151 | + Sampling time over 68 tokens: 0.019000 (seconds) |
| 152 | +``` |
0 commit comments