|
| 1 | +"""Ref https://github.com/pytorch/examples/blob/main/dcgan/main.py""" |
| 2 | + |
| 3 | +import torch.nn as nn |
| 4 | + |
| 5 | + |
| 6 | +class Generator(nn.Module): |
| 7 | + def __init__(self): |
| 8 | + super().__init__() |
| 9 | + self.main = nn.Sequential( |
| 10 | + # input is Z, going into a convolution |
| 11 | + nn.ConvTranspose2d(100, 64 * 8, 4, 1, 0, bias=False), |
| 12 | + nn.BatchNorm2d(64 * 8), |
| 13 | + nn.ReLU(True), |
| 14 | + # state size. (64*8) x 4 x 4 |
| 15 | + nn.ConvTranspose2d(64 * 8, 64 * 4, 4, 2, 1, bias=False), |
| 16 | + nn.BatchNorm2d(64 * 4), |
| 17 | + nn.ReLU(True), |
| 18 | + # state size. (64*4) x 8 x 8 |
| 19 | + nn.ConvTranspose2d(64 * 4, 64 * 2, 4, 2, 1, bias=False), |
| 20 | + nn.BatchNorm2d(64 * 2), |
| 21 | + nn.ReLU(True), |
| 22 | + # state size. (64*2) x 16 x 16 |
| 23 | + nn.ConvTranspose2d(64 * 2, 64, 4, 2, 1, bias=False), |
| 24 | + nn.BatchNorm2d(64), |
| 25 | + nn.ReLU(True), |
| 26 | + # state size. (64) x 32 x 32 |
| 27 | + nn.ConvTranspose2d(64, 3, 4, 2, 1, bias=False), |
| 28 | + nn.Tanh(), |
| 29 | + # state size. (3) x 64 x 64 |
| 30 | + ) |
| 31 | + |
| 32 | + def forward(self, input): |
| 33 | + output = self.main(input) |
| 34 | + return output |
| 35 | + |
| 36 | + |
| 37 | +# main_netG_input_shape = [1, 100, 1, 1] |
| 38 | +# model = Generator() |
| 39 | + |
| 40 | + |
| 41 | +class Discriminator(nn.Module): |
| 42 | + def __init__(self): |
| 43 | + super().__init__() |
| 44 | + self.main = nn.Sequential( |
| 45 | + # input is (3) x 64 x 64 |
| 46 | + nn.Conv2d(3, 64, 4, 2, 1, bias=False), |
| 47 | + nn.LeakyReLU(0.2, inplace=True), |
| 48 | + # state size. (64) x 32 x 32 |
| 49 | + nn.Conv2d(64, 64 * 2, 4, 2, 1, bias=False), |
| 50 | + nn.BatchNorm2d(64 * 2), |
| 51 | + nn.LeakyReLU(0.2, inplace=True), |
| 52 | + # state size. (64*2) x 16 x 16 |
| 53 | + nn.Conv2d(64 * 2, 64 * 4, 4, 2, 1, bias=False), |
| 54 | + nn.BatchNorm2d(64 * 4), |
| 55 | + nn.LeakyReLU(0.2, inplace=True), |
| 56 | + # state size. (64*4) x 8 x 8 |
| 57 | + nn.Conv2d(64 * 4, 64 * 8, 4, 2, 1, bias=False), |
| 58 | + nn.BatchNorm2d(64 * 8), |
| 59 | + nn.LeakyReLU(0.2, inplace=True), |
| 60 | + # state size. (64*8) x 4 x 4 |
| 61 | + nn.Conv2d(64 * 8, 1, 4, 1, 0, bias=False), |
| 62 | + nn.Sigmoid(), |
| 63 | + ) |
| 64 | + |
| 65 | + def forward(self, input): |
| 66 | + output = self.main(input) |
| 67 | + |
| 68 | + return output.view(-1, 1).squeeze(1) |
| 69 | + |
| 70 | + |
| 71 | +# main_netD_input_shape = [1, 3, 64, 64] |
| 72 | +# model = Discriminator() |
0 commit comments