@@ -661,10 +661,31 @@ def _prepare_for_llama_export(args) -> LLMEdgeManager:
661661 logging .info (f"Checkpoint dtype: { edge_manager .model .checkpoint_dtype } " )
662662 edge_manager = edge_manager .set_output_dir (output_dir_path ).source_transform (
663663 _get_source_transforms (
664- modelname = args .model ,
665664 dtype_override = dtype_override ,
665+ checkpoint = args .checkpoint ,
666666 checkpoint_dtype = DType .from_torch_dtype (checkpoint_dtype ), # type: ignore
667- args = args ,
667+ tokenizer_path = args .tokenizer_path ,
668+ use_spin_quant = args .use_spin_quant ,
669+ embedding_quantize = args .embedding_quantize ,
670+ quantization_mode = args .quantization_mode ,
671+ expand_rope_table = args .expand_rope_table ,
672+ use_custom_sdpa_with_attention_mask = getattr (args , "use_custom_sdpa_with_attention_mask" , False ),
673+ use_sdpa_with_kv_cache = args .use_sdpa_with_kv_cache ,
674+ quantize_kv_cache = args .quantize_kv_cache ,
675+ use_kv_cache = args .use_kv_cache ,
676+ qnn = args .qnn ,
677+ use_qnn_sha = args .use_qnn_sha ,
678+ optimized_rotation_path = args .optimized_rotation_path ,
679+ mps = args .mps ,
680+ coreml = args .coreml ,
681+ coreml_ios = args .coreml_ios ,
682+ vulkan = args .vulkan ,
683+ use_shared_embedding = args .use_shared_embedding ,
684+ use_qat = args .use_qat ,
685+ use_lora = args .use_lora ,
686+ preq_mode = args .preq_mode ,
687+ preq_group_size = args .preq_group_size ,
688+ preq_embedding_quantize = args .preq_embedding_quantize ,
668689 )
669690 )
670691
@@ -1155,23 +1176,65 @@ def _load_llama_model(
11551176
11561177
11571178def _get_source_transforms ( # noqa
1158- modelname : str ,
11591179 dtype_override : DType ,
11601180 * ,
1181+ checkpoint : Optional [str ] = None ,
11611182 checkpoint_dtype : Optional [DType ] = None ,
1162- args ,
1183+ tokenizer_path : Optional [str ] = None ,
1184+ use_spin_quant : Optional [str ] = None ,
1185+ embedding_quantize : Optional [str ] = None ,
1186+ quantization_mode : Optional [str ] = None ,
1187+ expand_rope_table : bool = False ,
1188+ use_custom_sdpa_with_attention_mask : bool = False ,
1189+ use_sdpa_with_kv_cache : bool = False ,
1190+ quantize_kv_cache : bool = False ,
1191+ use_kv_cache : bool = False ,
1192+ qnn : bool = False ,
1193+ use_qnn_sha : bool = False ,
1194+ optimized_rotation_path : Optional [str ] = None ,
1195+ mps : bool = False ,
1196+ coreml : bool = False ,
1197+ coreml_ios : int = 15 ,
1198+ vulkan : bool = False ,
1199+ use_shared_embedding : bool = False ,
1200+ use_qat : bool = False ,
1201+ use_lora : int = 0 ,
1202+ preq_mode : Optional [str ] = None ,
1203+ preq_group_size : Optional [int ] = None ,
1204+ preq_embedding_quantize : Optional [str ] = None ,
11631205) -> List [Callable [[torch .nn .Module ], torch .nn .Module ]]:
11641206 """
11651207 Return a list of functions that transform a graph.
11661208
11671209 Args:
1168- modelname: The name of the model.
11691210 dtype_override: The dtype to use for the model.
1211+ checkpoint: Path to the checkpoint file.
11701212 checkpoint_dtype: The dtype of the checkpoint. At the moment, if this is specified,
11711213 it means that you want to run quantize transformations on the weights represented
11721214 in their original dtype, while the overall dtype of the model maybe something
11731215 different. If not specified, defaults to dtype_override.
1174- args: The arguments passed to the script.
1216+ tokenizer_path: Path to the tokenizer file.
1217+ use_spin_quant: Type of spin quant to use ("cuda" or "native").
1218+ embedding_quantize: Type of embedding quantization.
1219+ quantization_mode: Type of quantization mode.
1220+ expand_rope_table: Whether to expand rope table.
1221+ use_custom_sdpa_with_attention_mask: Whether to use custom SDPA with attention mask.
1222+ use_sdpa_with_kv_cache: Whether to use SDPA with KV cache.
1223+ quantize_kv_cache: Whether to quantize KV cache.
1224+ use_kv_cache: Whether to use KV cache.
1225+ qnn: Whether to use QNN.
1226+ use_qnn_sha: Whether to use QNN SHA.
1227+ optimized_rotation_path: Path to optimized rotation.
1228+ mps: Whether to use MPS.
1229+ coreml: Whether to use CoreML.
1230+ coreml_ios: CoreML iOS version.
1231+ vulkan: Whether to use Vulkan.
1232+ use_shared_embedding: Whether to use shared embedding.
1233+ use_qat: Whether to use QAT.
1234+ use_lora: LoRA rank (0 means no LoRA).
1235+ preq_mode: Pre-quantization mode.
1236+ preq_group_size: Pre-quantization group size.
1237+ preq_embedding_quantize: Pre-quantization embedding quantize.
11751238
11761239 Returns:
11771240 A list of transformation functions.
@@ -1182,21 +1245,21 @@ def _get_source_transforms( # noqa
11821245
11831246 transforms = []
11841247
1185- if args . use_spin_quant :
1186- if args . use_spin_quant == "cuda" :
1248+ if use_spin_quant :
1249+ if use_spin_quant == "cuda" :
11871250 from .source_transformation .spin_quant import (
11881251 inject_fast_hadamard_transform_cuda_for_spin_quant ,
11891252 )
11901253
11911254 transforms .append (inject_fast_hadamard_transform_cuda_for_spin_quant )
1192- elif args . use_spin_quant == "native" :
1255+ elif use_spin_quant == "native" :
11931256 from .source_transformation .spin_quant import (
11941257 inject_fast_hadamard_transform_native_for_spin_quant ,
11951258 )
11961259
11971260 transforms .append (inject_fast_hadamard_transform_native_for_spin_quant )
11981261
1199- if args . embedding_quantize :
1262+ if embedding_quantize :
12001263 """
12011264 When this option is selected, it finds all embedding layers and transforms
12021265 into quantized embedding equivalent module.
@@ -1206,12 +1269,25 @@ def _get_source_transforms( # noqa
12061269 transformations based on the given checkpoint first. In those cases,
12071270 this wil be a no-op.
12081271 """
1209- modelname = f"{ modelname } _e"
1272+ # Create a mock args object with the necessary attributes
1273+ class Args :
1274+ pass
1275+ args = Args ()
1276+ args .checkpoint = checkpoint
1277+ args .tokenizer_path = tokenizer_path
1278+ args .embedding_quantize = embedding_quantize
1279+ args .use_shared_embedding = use_shared_embedding
1280+ args .use_qat = use_qat
1281+ args .use_lora = use_lora
1282+ args .preq_mode = preq_mode
1283+ args .preq_group_size = preq_group_size
1284+ args .preq_embedding_quantize = preq_embedding_quantize
1285+
12101286 transforms .append (get_quant_embedding_transform (args , checkpoint_dtype ))
12111287
12121288 # quantization_mode should be applied after embedding_quantize
12131289 # to support shared_embedding
1214- if args . quantization_mode :
1290+ if quantization_mode :
12151291 """
12161292 When this option is selected, it finds all linear layers and transforms
12171293 into quantized linear equivalent module.
@@ -1225,7 +1301,19 @@ def _get_source_transforms( # noqa
12251301 There are cases where this may be a no-op, namely, if all linears are
12261302 quantized in the checkpoint.
12271303 """
1228- modelname = f"{ modelname } _q"
1304+ # Create a mock args object with the necessary attributes
1305+ class Args :
1306+ pass
1307+ args = Args ()
1308+ args .checkpoint = checkpoint
1309+ args .tokenizer_path = tokenizer_path
1310+ args .quantization_mode = quantization_mode
1311+ args .group_size = preq_group_size # Using preq_group_size as group_size
1312+ args .use_shared_embedding = use_shared_embedding
1313+ args .use_qat = use_qat
1314+ args .use_lora = use_lora
1315+ args .preq_mode = preq_mode
1316+
12291317 transforms .append (
12301318 get_quant_weight_transform (
12311319 args = args ,
@@ -1234,15 +1322,12 @@ def _get_source_transforms( # noqa
12341322 )
12351323 )
12361324
1237- if args . expand_rope_table :
1325+ if expand_rope_table :
12381326 transforms .append (materialze_broadcast_of_rope_freq_cis )
12391327
1240- use_attention_mask_for_custom_sdpa = False
1241- if isinstance (args , argparse .Namespace ):
1242- if getattr (args , "use_custom_sdpa_with_attention_mask" , None ):
1243- use_attention_mask_for_custom_sdpa = True
1328+ use_attention_mask_for_custom_sdpa = use_custom_sdpa_with_attention_mask
12441329
1245- if args . use_sdpa_with_kv_cache :
1330+ if use_sdpa_with_kv_cache :
12461331 transforms .append (replace_kv_cache_with_custom_kv_cache )
12471332 # todo: do this optionally
12481333 # if use attention mask instead of causal attention
@@ -1254,23 +1339,23 @@ def _get_source_transforms( # noqa
12541339 else :
12551340 transforms .append (replace_sdpa_with_custom_op )
12561341
1257- if args . quantize_kv_cache :
1258- assert args . use_kv_cache , "quantize_kv_cache requires use_kv_cache=True"
1342+ if quantize_kv_cache :
1343+ assert use_kv_cache , "quantize_kv_cache requires use_kv_cache=True"
12591344 transforms .append (replace_kv_cache_with_quantized_kv_cache )
12601345 # Right now
12611346 transforms .append (replace_sdpa_with_quantized_sdpa )
12621347
1263- if args . use_kv_cache :
1264- if args . qnn :
1348+ if use_kv_cache :
1349+ if qnn :
12651350 from executorch .backends .qualcomm .utils .utils import (
12661351 convert_linear_to_conv2d ,
12671352 )
12681353
1269- if args . use_qnn_sha :
1270- if args . optimized_rotation_path :
1354+ if use_qnn_sha :
1355+ if optimized_rotation_path :
12711356 transforms .append (fuse_layer_norms )
12721357 transforms .append (
1273- get_model_with_r1_r2 (args . optimized_rotation_path )
1358+ get_model_with_r1_r2 (optimized_rotation_path )
12741359 )
12751360 transforms .append (replace_attention_to_attention_sha )
12761361 transforms .append (replace_causal_mask )
@@ -1282,29 +1367,29 @@ def _get_source_transforms( # noqa
12821367 transforms .append (replace_sdpa_with_flex_sdpa )
12831368 transforms .append (replace_causal_mask )
12841369 transforms .append (replace_rms_norm_with_native_rms_norm )
1285- if args . optimized_rotation_path :
1370+ if optimized_rotation_path :
12861371 transforms .append (fuse_layer_norms )
12871372 transforms .append (
1288- get_model_with_r1_r2 (args . optimized_rotation_path )
1373+ get_model_with_r1_r2 (optimized_rotation_path )
12891374 )
12901375 # pyre-fixme[16]: Module `backends` has no attribute `qualcomm`.
12911376 transforms .append (convert_linear_to_conv2d )
12921377
1293- elif args . mps :
1378+ elif mps :
12941379 # Currently mps doesn't support sdpa op, use the simpler decomposition
12951380 # to get free perf gain.
12961381 transforms .append (replace_sdpa_with_simple_sdpa )
12971382 transforms .append (replace_causal_mask )
12981383
1299- elif args . coreml :
1384+ elif coreml :
13001385 # iOS 18 introduced fused sdpa op
1301- if args . coreml_ios >= 18 :
1386+ if coreml_ios >= 18 :
13021387 transforms .append (replace_sdpa_with_coreml_sdpa )
13031388 else :
13041389 transforms .append (replace_sdpa_with_simple_sdpa )
13051390 transforms .append (replace_kv_cache_with_coreml_kv_cache )
13061391
1307- if args . vulkan :
1392+ if vulkan :
13081393 transforms .append (replace_with_vulkan_rotary_emb )
13091394
13101395 return transforms
0 commit comments