@@ -651,10 +651,29 @@ def _prepare_for_llama_export(args) -> LLMEdgeManager:
651651 logging .info (f"Checkpoint dtype: { edge_manager .model .checkpoint_dtype } " )
652652 edge_manager = edge_manager .set_output_dir (output_dir_path ).source_transform (
653653 _get_source_transforms (
654- modelname = args .model ,
655654 dtype_override = dtype_override ,
656655 checkpoint_dtype = DType .from_torch_dtype (checkpoint_dtype ), # type: ignore
657- args = args ,
656+ use_spin_quant = args .use_spin_quant ,
657+ embedding_quantize = args .embedding_quantize ,
658+ quantization_mode = args .quantization_mode ,
659+ expand_rope_table = args .expand_rope_table ,
660+ use_custom_sdpa_with_attention_mask = getattr (args , "use_custom_sdpa_with_attention_mask" , False ),
661+ use_sdpa_with_kv_cache = args .use_sdpa_with_kv_cache ,
662+ quantize_kv_cache = args .quantize_kv_cache ,
663+ use_kv_cache = args .use_kv_cache ,
664+ qnn = args .qnn ,
665+ use_qnn_sha = args .use_qnn_sha ,
666+ optimized_rotation_path = args .optimized_rotation_path ,
667+ mps = args .mps ,
668+ coreml = args .coreml ,
669+ coreml_ios = args .coreml_ios ,
670+ vulkan = args .vulkan ,
671+ use_shared_embedding = args .use_shared_embedding ,
672+ use_qat = args .use_qat ,
673+ use_lora = args .use_lora ,
674+ preq_mode = args .preq_mode ,
675+ preq_group_size = args .preq_group_size ,
676+ preq_embedding_quantize = args .preq_embedding_quantize ,
658677 )
659678 )
660679
@@ -1145,23 +1164,61 @@ def _load_llama_model(
11451164
11461165
11471166def _get_source_transforms ( # noqa
1148- modelname : str ,
11491167 dtype_override : DType ,
11501168 * ,
11511169 checkpoint_dtype : Optional [DType ] = None ,
1152- args ,
1170+ use_spin_quant : Optional [str ] = None ,
1171+ embedding_quantize : Optional [str ] = None ,
1172+ quantization_mode : Optional [str ] = None ,
1173+ expand_rope_table : bool = False ,
1174+ use_custom_sdpa_with_attention_mask : bool = False ,
1175+ use_sdpa_with_kv_cache : bool = False ,
1176+ quantize_kv_cache : bool = False ,
1177+ use_kv_cache : bool = False ,
1178+ qnn : bool = False ,
1179+ use_qnn_sha : bool = False ,
1180+ optimized_rotation_path : Optional [str ] = None ,
1181+ mps : bool = False ,
1182+ coreml : bool = False ,
1183+ coreml_ios : int = 15 ,
1184+ vulkan : bool = False ,
1185+ use_shared_embedding : bool = False ,
1186+ use_qat : bool = False ,
1187+ use_lora : int = 0 ,
1188+ preq_mode : Optional [str ] = None ,
1189+ preq_group_size : int = 32 ,
1190+ preq_embedding_quantize : str = "8,0" ,
11531191) -> List [Callable [[torch .nn .Module ], torch .nn .Module ]]:
11541192 """
11551193 Return a list of functions that transform a graph.
11561194
11571195 Args:
1158- modelname: The name of the model.
11591196 dtype_override: The dtype to use for the model.
11601197 checkpoint_dtype: The dtype of the checkpoint. At the moment, if this is specified,
11611198 it means that you want to run quantize transformations on the weights represented
11621199 in their original dtype, while the overall dtype of the model maybe something
11631200 different. If not specified, defaults to dtype_override.
1164- args: The arguments passed to the script.
1201+ use_spin_quant: Type of spin quant to use ("cuda" or "native").
1202+ embedding_quantize: Type of embedding quantization.
1203+ quantization_mode: Type of quantization mode.
1204+ expand_rope_table: Whether to expand rope table.
1205+ use_custom_sdpa_with_attention_mask: Whether to use custom SDPA with attention mask.
1206+ use_sdpa_with_kv_cache: Whether to use SDPA with KV cache.
1207+ quantize_kv_cache: Whether to quantize KV cache.
1208+ use_kv_cache: Whether to use KV cache.
1209+ qnn: Whether to use QNN.
1210+ use_qnn_sha: Whether to use QNN SHA.
1211+ optimized_rotation_path: Path to optimized rotation.
1212+ mps: Whether to use MPS.
1213+ coreml: Whether to use CoreML.
1214+ coreml_ios: CoreML iOS version.
1215+ vulkan: Whether to use Vulkan.
1216+ use_shared_embedding: Whether to use shared embedding.
1217+ use_qat: Whether to use QAT.
1218+ use_lora: LoRA rank (0 means no LoRA).
1219+ preq_mode: Pre-quantization mode.
1220+ preq_group_size: Pre-quantization group size.
1221+ preq_embedding_quantize: Pre-quantization embedding quantize.
11651222
11661223 Returns:
11671224 A list of transformation functions.
@@ -1172,21 +1229,21 @@ def _get_source_transforms( # noqa
11721229
11731230 transforms = []
11741231
1175- if args . use_spin_quant :
1176- if args . use_spin_quant == "cuda" :
1232+ if use_spin_quant :
1233+ if use_spin_quant == "cuda" :
11771234 from .source_transformation .spin_quant import (
11781235 inject_fast_hadamard_transform_cuda_for_spin_quant ,
11791236 )
11801237
11811238 transforms .append (inject_fast_hadamard_transform_cuda_for_spin_quant )
1182- elif args . use_spin_quant == "native" :
1239+ elif use_spin_quant == "native" :
11831240 from .source_transformation .spin_quant import (
11841241 inject_fast_hadamard_transform_native_for_spin_quant ,
11851242 )
11861243
11871244 transforms .append (inject_fast_hadamard_transform_native_for_spin_quant )
11881245
1189- if args . embedding_quantize :
1246+ if embedding_quantize :
11901247 """
11911248 When this option is selected, it finds all embedding layers and transforms
11921249 into quantized embedding equivalent module.
@@ -1196,12 +1253,23 @@ def _get_source_transforms( # noqa
11961253 transformations based on the given checkpoint first. In those cases,
11971254 this wil be a no-op.
11981255 """
1199- modelname = f"{ modelname } _e"
1256+ # Create a mock args object with the necessary attributes
1257+ class Args :
1258+ pass
1259+ args = Args ()
1260+ args .embedding_quantize = embedding_quantize
1261+ args .use_shared_embedding = use_shared_embedding
1262+ args .use_qat = use_qat
1263+ args .use_lora = use_lora
1264+ args .preq_mode = preq_mode
1265+ args .preq_group_size = preq_group_size
1266+ args .preq_embedding_quantize = preq_embedding_quantize
1267+
12001268 transforms .append (get_quant_embedding_transform (args , checkpoint_dtype ))
12011269
12021270 # quantization_mode should be applied after embedding_quantize
12031271 # to support shared_embedding
1204- if args . quantization_mode :
1272+ if quantization_mode :
12051273 """
12061274 When this option is selected, it finds all linear layers and transforms
12071275 into quantized linear equivalent module.
@@ -1215,7 +1283,17 @@ def _get_source_transforms( # noqa
12151283 There are cases where this may be a no-op, namely, if all linears are
12161284 quantized in the checkpoint.
12171285 """
1218- modelname = f"{ modelname } _q"
1286+ # Create a mock args object with the necessary attributes
1287+ class Args :
1288+ pass
1289+ args = Args ()
1290+ args .quantization_mode = quantization_mode
1291+ args .group_size = preq_group_size # Using preq_group_size as group_size
1292+ args .use_shared_embedding = use_shared_embedding
1293+ args .use_qat = use_qat
1294+ args .use_lora = use_lora
1295+ args .preq_mode = preq_mode
1296+
12191297 transforms .append (
12201298 get_quant_weight_transform (
12211299 args = args ,
@@ -1224,15 +1302,12 @@ def _get_source_transforms( # noqa
12241302 )
12251303 )
12261304
1227- if args . expand_rope_table :
1305+ if expand_rope_table :
12281306 transforms .append (materialze_broadcast_of_rope_freq_cis )
12291307
1230- use_attention_mask_for_custom_sdpa = False
1231- if isinstance (args , argparse .Namespace ):
1232- if getattr (args , "use_custom_sdpa_with_attention_mask" , None ):
1233- use_attention_mask_for_custom_sdpa = True
1308+ use_attention_mask_for_custom_sdpa = use_custom_sdpa_with_attention_mask
12341309
1235- if args . use_sdpa_with_kv_cache :
1310+ if use_sdpa_with_kv_cache :
12361311 transforms .append (replace_kv_cache_with_custom_kv_cache )
12371312 # todo: do this optionally
12381313 # if use attention mask instead of causal attention
@@ -1244,23 +1319,23 @@ def _get_source_transforms( # noqa
12441319 else :
12451320 transforms .append (replace_sdpa_with_custom_op )
12461321
1247- if args . quantize_kv_cache :
1248- assert args . use_kv_cache , "quantize_kv_cache requires use_kv_cache=True"
1322+ if quantize_kv_cache :
1323+ assert use_kv_cache , "quantize_kv_cache requires use_kv_cache=True"
12491324 transforms .append (replace_kv_cache_with_quantized_kv_cache )
12501325 # Right now
12511326 transforms .append (replace_sdpa_with_quantized_sdpa )
12521327
1253- if args . use_kv_cache :
1254- if args . qnn :
1328+ if use_kv_cache :
1329+ if qnn :
12551330 from executorch .backends .qualcomm .utils .utils import (
12561331 convert_linear_to_conv2d ,
12571332 )
12581333
1259- if args . use_qnn_sha :
1260- if args . optimized_rotation_path :
1334+ if use_qnn_sha :
1335+ if optimized_rotation_path :
12611336 transforms .append (fuse_layer_norms )
12621337 transforms .append (
1263- get_model_with_r1_r2 (args . optimized_rotation_path )
1338+ get_model_with_r1_r2 (optimized_rotation_path )
12641339 )
12651340 transforms .append (replace_attention_to_attention_sha )
12661341 transforms .append (replace_causal_mask )
@@ -1272,29 +1347,29 @@ def _get_source_transforms( # noqa
12721347 transforms .append (replace_sdpa_with_flex_sdpa )
12731348 transforms .append (replace_causal_mask )
12741349 transforms .append (replace_rms_norm_with_native_rms_norm )
1275- if args . optimized_rotation_path :
1350+ if optimized_rotation_path :
12761351 transforms .append (fuse_layer_norms )
12771352 transforms .append (
1278- get_model_with_r1_r2 (args . optimized_rotation_path )
1353+ get_model_with_r1_r2 (optimized_rotation_path )
12791354 )
12801355 # pyre-fixme[16]: Module `backends` has no attribute `qualcomm`.
12811356 transforms .append (convert_linear_to_conv2d )
12821357
1283- elif args . mps :
1358+ elif mps :
12841359 # Currently mps doesn't support sdpa op, use the simpler decomposition
12851360 # to get free perf gain.
12861361 transforms .append (replace_sdpa_with_simple_sdpa )
12871362 transforms .append (replace_causal_mask )
12881363
1289- elif args . coreml :
1364+ elif coreml :
12901365 # iOS 18 introduced fused sdpa op
1291- if args . coreml_ios >= 18 :
1366+ if coreml_ios >= 18 :
12921367 transforms .append (replace_sdpa_with_coreml_sdpa )
12931368 else :
12941369 transforms .append (replace_sdpa_with_simple_sdpa )
12951370 transforms .append (replace_kv_cache_with_coreml_kv_cache )
12961371
1297- if args . vulkan :
1372+ if vulkan :
12981373 transforms .append (replace_with_vulkan_rotary_emb )
12991374
13001375 return transforms
0 commit comments