|
| 1 | +# Copyright (c) Meta Platforms, Inc. and affiliates. |
| 2 | +# All rights reserved. |
| 3 | +# |
| 4 | +# This source code is licensed under the BSD-style license found in the |
| 5 | +# LICENSE file in the root directory of this source tree. |
| 6 | + |
| 7 | +# pyre-unsafe |
| 8 | + |
| 9 | + |
| 10 | +import torch |
| 11 | +from executorch.backends.test.suite.flow import TestFlow |
| 12 | + |
| 13 | +from executorch.backends.test.suite.operators import ( |
| 14 | + dtype_test, |
| 15 | + operator_test, |
| 16 | + OperatorTest, |
| 17 | +) |
| 18 | + |
| 19 | + |
| 20 | +class IndexSelectModel(torch.nn.Module): |
| 21 | + def __init__(self, dim=0): |
| 22 | + super().__init__() |
| 23 | + self.dim = dim |
| 24 | + |
| 25 | + def forward(self, x, indices): |
| 26 | + return torch.index_select(x, self.dim, indices) |
| 27 | + |
| 28 | + |
| 29 | +@operator_test |
| 30 | +class IndexSelect(OperatorTest): |
| 31 | + @dtype_test |
| 32 | + def test_index_select_dtype(self, flow: TestFlow, dtype) -> None: |
| 33 | + indices = torch.tensor([0, 2], dtype=torch.int64) |
| 34 | + self._test_op( |
| 35 | + IndexSelectModel(dim=0), |
| 36 | + ((torch.rand(5, 3) * 100).to(dtype), indices), |
| 37 | + flow, |
| 38 | + generate_random_test_inputs=False, |
| 39 | + ) |
| 40 | + |
| 41 | + def test_index_select_basic(self, flow: TestFlow) -> None: |
| 42 | + indices = torch.tensor([0, 2], dtype=torch.int64) |
| 43 | + self._test_op( |
| 44 | + IndexSelectModel(dim=0), |
| 45 | + (torch.randn(5, 3), indices), |
| 46 | + flow, |
| 47 | + generate_random_test_inputs=False, |
| 48 | + ) |
| 49 | + |
| 50 | + def test_index_select_dimensions(self, flow: TestFlow) -> None: |
| 51 | + indices = torch.tensor([0, 2], dtype=torch.int64) |
| 52 | + self._test_op( |
| 53 | + IndexSelectModel(dim=0), |
| 54 | + (torch.randn(5, 3), indices), |
| 55 | + flow, |
| 56 | + generate_random_test_inputs=False, |
| 57 | + ) |
| 58 | + |
| 59 | + indices = torch.tensor([0, 1], dtype=torch.int64) |
| 60 | + self._test_op( |
| 61 | + IndexSelectModel(dim=1), |
| 62 | + (torch.randn(5, 3), indices), |
| 63 | + flow, |
| 64 | + generate_random_test_inputs=False, |
| 65 | + ) |
| 66 | + |
| 67 | + indices = torch.tensor([0, 2], dtype=torch.int64) |
| 68 | + self._test_op( |
| 69 | + IndexSelectModel(dim=2), |
| 70 | + (torch.randn(3, 4, 5), indices), |
| 71 | + flow, |
| 72 | + generate_random_test_inputs=False, |
| 73 | + ) |
| 74 | + |
| 75 | + def test_index_select_shapes(self, flow: TestFlow) -> None: |
| 76 | + indices = torch.tensor([0, 1], dtype=torch.int64) |
| 77 | + |
| 78 | + self._test_op( |
| 79 | + IndexSelectModel(dim=0), |
| 80 | + (torch.randn(5), indices), |
| 81 | + flow, |
| 82 | + generate_random_test_inputs=False, |
| 83 | + ) |
| 84 | + |
| 85 | + self._test_op( |
| 86 | + IndexSelectModel(dim=0), |
| 87 | + (torch.randn(5, 3), indices), |
| 88 | + flow, |
| 89 | + generate_random_test_inputs=False, |
| 90 | + ) |
| 91 | + |
| 92 | + self._test_op( |
| 93 | + IndexSelectModel(dim=0), |
| 94 | + (torch.randn(5, 3, 2), indices), |
| 95 | + flow, |
| 96 | + generate_random_test_inputs=False, |
| 97 | + ) |
| 98 | + |
| 99 | + self._test_op( |
| 100 | + IndexSelectModel(dim=0), |
| 101 | + (torch.randn(5, 3, 2, 4), indices), |
| 102 | + flow, |
| 103 | + generate_random_test_inputs=False, |
| 104 | + ) |
| 105 | + |
| 106 | + def test_index_select_indices(self, flow: TestFlow) -> None: |
| 107 | + indices = torch.tensor([2], dtype=torch.int64) |
| 108 | + self._test_op( |
| 109 | + IndexSelectModel(dim=0), |
| 110 | + (torch.randn(5, 3), indices), |
| 111 | + flow, |
| 112 | + generate_random_test_inputs=False, |
| 113 | + ) |
| 114 | + |
| 115 | + indices = torch.tensor([0, 2, 4], dtype=torch.int64) |
| 116 | + self._test_op( |
| 117 | + IndexSelectModel(dim=0), |
| 118 | + (torch.randn(5, 3), indices), |
| 119 | + flow, |
| 120 | + generate_random_test_inputs=False, |
| 121 | + ) |
| 122 | + |
| 123 | + indices = torch.tensor([1, 1, 3, 3], dtype=torch.int64) |
| 124 | + self._test_op( |
| 125 | + IndexSelectModel(dim=0), |
| 126 | + (torch.randn(5, 3), indices), |
| 127 | + flow, |
| 128 | + generate_random_test_inputs=False, |
| 129 | + ) |
| 130 | + |
| 131 | + indices = torch.tensor([4, 3, 2, 1, 0], dtype=torch.int64) |
| 132 | + self._test_op( |
| 133 | + IndexSelectModel(dim=0), |
| 134 | + (torch.randn(5, 3), indices), |
| 135 | + flow, |
| 136 | + generate_random_test_inputs=False, |
| 137 | + ) |
| 138 | + |
| 139 | + def test_index_select_edge_cases(self, flow: TestFlow) -> None: |
| 140 | + indices = torch.tensor([0, 1, 2, 3, 4], dtype=torch.int64) |
| 141 | + self._test_op( |
| 142 | + IndexSelectModel(dim=0), |
| 143 | + (torch.randn(5, 3), indices), |
| 144 | + flow, |
| 145 | + generate_random_test_inputs=False, |
| 146 | + ) |
| 147 | + |
| 148 | + indices = torch.tensor([0], dtype=torch.int64) |
| 149 | + self._test_op( |
| 150 | + IndexSelectModel(dim=0), |
| 151 | + (torch.randn(1, 3), indices), |
| 152 | + flow, |
| 153 | + generate_random_test_inputs=False, |
| 154 | + ) |
| 155 | + |
| 156 | + indices = torch.tensor([0, 1], dtype=torch.int64) |
| 157 | + self._test_op( |
| 158 | + IndexSelectModel(dim=0), |
| 159 | + (torch.zeros(5, 3), indices), |
| 160 | + flow, |
| 161 | + generate_random_test_inputs=False, |
| 162 | + ) |
| 163 | + |
| 164 | + indices = torch.tensor([0, 1], dtype=torch.int64) |
| 165 | + self._test_op( |
| 166 | + IndexSelectModel(dim=0), |
| 167 | + (torch.ones(5, 3), indices), |
| 168 | + flow, |
| 169 | + generate_random_test_inputs=False, |
| 170 | + ) |
0 commit comments