|  | 
| 6 | 6 |  * LICENSE file in the root directory of this source tree. | 
| 7 | 7 |  */ | 
| 8 | 8 | 
 | 
| 9 |  | - #include <executorch/extension/data_loader/file_data_loader.h> | 
| 10 |  | - #include <executorch/extension/flat_tensor/flat_tensor_data_map.h> | 
| 11 |  | - #include <executorch/runtime/core/error.h> | 
| 12 |  | - #include <executorch/runtime/core/result.h> | 
| 13 |  | - #include <executorch/runtime/executor/method.h> | 
| 14 |  | - #include <executorch/runtime/executor/program.h> | 
| 15 |  | - #include <executorch/runtime/executor/test/managed_memory_manager.h> | 
| 16 |  | - #include <executorch/runtime/platform/runtime.h> | 
| 17 |  | -  | 
| 18 |  | - #include <gtest/gtest.h> | 
| 19 |  | -  | 
| 20 |  | - using namespace ::testing; | 
| 21 |  | - using executorch::extension::FlatTensorDataMap; | 
| 22 |  | - using executorch::runtime::DataLoader; | 
| 23 |  | - using executorch::runtime::Error; | 
| 24 |  | - using executorch::runtime::FreeableBuffer; | 
| 25 |  | - using executorch::runtime::Method; | 
| 26 |  | - using executorch::runtime::Program; | 
| 27 |  | - using executorch::runtime::Result; | 
| 28 |  | - using executorch::runtime::testing::ManagedMemoryManager; | 
| 29 |  | - using torch::executor::util::FileDataLoader; | 
| 30 |  | -  | 
| 31 |  | - constexpr size_t kDefaultNonConstMemBytes = 32 * 1024U; | 
| 32 |  | - constexpr size_t kDefaultRuntimeMemBytes = 32 * 1024U; | 
| 33 |  | -  | 
| 34 |  | - class DataSeparationTest : public ::testing::Test { | 
| 35 |  | -  protected: | 
| 36 |  | -   void SetUp() override { | 
| 37 |  | -     // Since these tests cause ET_LOG to be called, the PAL must be initialized | 
| 38 |  | -     // first. | 
| 39 |  | -     executorch::runtime::runtime_init(); | 
| 40 |  | -  | 
| 41 |  | -     // Create data loaders. | 
| 42 |  | -     Result<FileDataLoader> linear_program_loader = | 
| 43 |  | -         FileDataLoader::from(std::getenv("ET_MODULE_LINEAR_XNN_PROGRAM_PATH")); | 
| 44 |  | -     ASSERT_EQ(linear_program_loader.error(), Error::Ok); | 
| 45 |  | -     linear_program_loader_ = std::make_unique<FileDataLoader>( | 
| 46 |  | -         std::move(linear_program_loader.get())); | 
| 47 |  | -  | 
| 48 |  | -     Result<FileDataLoader> linear_data_loader = | 
| 49 |  | -         FileDataLoader::from(std::getenv("ET_MODULE_LINEAR_XNN_DATA_PATH")); | 
| 50 |  | -     ASSERT_EQ(linear_data_loader.error(), Error::Ok); | 
| 51 |  | -     linear_data_loader_ = | 
| 52 |  | -         std::make_unique<FileDataLoader>(std::move(linear_data_loader.get())); | 
| 53 |  | -  | 
| 54 |  | -     // Create programs. | 
| 55 |  | -     Result<Program> linear_program = Program::load( | 
| 56 |  | -         linear_program_loader_.get(), | 
| 57 |  | -         Program::Verification::InternalConsistency); | 
| 58 |  | -     ASSERT_EQ(linear_program.error(), Error::Ok); | 
| 59 |  | -     linear_program_ = | 
| 60 |  | -         std::make_unique<Program>(std::move(linear_program.get())); | 
| 61 |  | -  | 
| 62 |  | -     Result<FlatTensorDataMap> linear_data_map = | 
| 63 |  | -         FlatTensorDataMap::load(linear_data_loader_.get()); | 
| 64 |  | -     EXPECT_EQ(linear_data_map.error(), Error::Ok); | 
| 65 |  | -     linear_data_map_ = | 
| 66 |  | -         std::make_unique<FlatTensorDataMap>(std::move(linear_data_map.get())); | 
| 67 |  | -   } | 
| 68 |  | -  | 
| 69 |  | -  private: | 
| 70 |  | -   std::unique_ptr<FileDataLoader> linear_program_loader_; | 
| 71 |  | -   std::unique_ptr<FileDataLoader> linear_data_loader_; | 
| 72 |  | -  | 
| 73 |  | -  protected: | 
| 74 |  | -   std::unique_ptr<Program> linear_program_; | 
| 75 |  | -   std::unique_ptr<FlatTensorDataMap> linear_data_map_; | 
| 76 |  | - }; | 
| 77 |  | -  | 
| 78 |  | - TEST_F(DataSeparationTest, TestExternalData) { | 
| 79 |  | -    FlatTensorDataMap* data_map = linear_data_map_.get(); | 
| 80 |  | -    EXPECT_EQ(data_map->get_num_keys().get(), 2); | 
| 81 |  | - | 
| 82 |  | -    Result<const char*> key0 = data_map->get_key(0); | 
| 83 |  | -    EXPECT_EQ(key0.error(), Error::Ok); | 
| 84 |  | -    Result<const char*> key1 = data_map->get_key(1); | 
| 85 |  | -    EXPECT_EQ(key1.error(), Error::Ok); | 
| 86 |  | - | 
| 87 |  | -    // Check that accessing keys out of bounds fails. | 
| 88 |  | -    EXPECT_EQ(data_map->get_key(2).error(), Error::InvalidArgument); | 
| 89 |  | - | 
| 90 |  | -    // Linear.weight | 
| 91 |  | -    Result<FreeableBuffer> data0 = data_map->get_data(key0.get()); | 
| 92 |  | -    EXPECT_EQ(data0.error(), Error::Ok); | 
| 93 |  | -    EXPECT_EQ(data0.get().size(), 36); // 3*3*4 (3*3 matrix, 4 bytes per float) | 
| 94 |  | - | 
| 95 |  | -    // Linear.bias | 
| 96 |  | -    Result<FreeableBuffer> data1 = data_map->get_data(key1.get()); | 
| 97 |  | -    EXPECT_EQ(data1.error(), Error::Ok); | 
| 98 |  | -    EXPECT_EQ(data1.get().size(), 12); // 3*4 (3 vector, 4 bytes per float) | 
| 99 |  | - | 
| 100 |  | -    // Check that accessing non-existent data fails. | 
| 101 |  | -    Result<FreeableBuffer> data2 = data_map->get_data("nonexistent"); | 
| 102 |  | -    EXPECT_EQ(data2.error(), Error::NotFound); | 
|  | 9 | +#include <executorch/extension/data_loader/file_data_loader.h> | 
|  | 10 | +#include <executorch/extension/flat_tensor/flat_tensor_data_map.h> | 
|  | 11 | +#include <executorch/runtime/core/error.h> | 
|  | 12 | +#include <executorch/runtime/core/result.h> | 
|  | 13 | +#include <executorch/runtime/executor/method.h> | 
|  | 14 | +#include <executorch/runtime/executor/program.h> | 
|  | 15 | +#include <executorch/runtime/executor/test/managed_memory_manager.h> | 
|  | 16 | +#include <executorch/runtime/platform/runtime.h> | 
|  | 17 | + | 
|  | 18 | +#include <gtest/gtest.h> | 
|  | 19 | + | 
|  | 20 | +using namespace ::testing; | 
|  | 21 | +using executorch::extension::FlatTensorDataMap; | 
|  | 22 | +using executorch::runtime::DataLoader; | 
|  | 23 | +using executorch::runtime::Error; | 
|  | 24 | +using executorch::runtime::FreeableBuffer; | 
|  | 25 | +using executorch::runtime::Method; | 
|  | 26 | +using executorch::runtime::Program; | 
|  | 27 | +using executorch::runtime::Result; | 
|  | 28 | +using executorch::runtime::testing::ManagedMemoryManager; | 
|  | 29 | +using torch::executor::util::FileDataLoader; | 
|  | 30 | + | 
|  | 31 | +constexpr size_t kDefaultNonConstMemBytes = 32 * 1024U; | 
|  | 32 | +constexpr size_t kDefaultRuntimeMemBytes = 32 * 1024U; | 
|  | 33 | + | 
|  | 34 | +class DataSeparationTest : public ::testing::Test { | 
|  | 35 | + protected: | 
|  | 36 | +  void SetUp() override { | 
|  | 37 | +    // Since these tests cause ET_LOG to be called, the PAL must be initialized | 
|  | 38 | +    // first. | 
|  | 39 | +    executorch::runtime::runtime_init(); | 
|  | 40 | + | 
|  | 41 | +    // Create data loaders. | 
|  | 42 | +    Result<FileDataLoader> linear_program_loader = | 
|  | 43 | +        FileDataLoader::from(std::getenv("ET_MODULE_LINEAR_XNN_PROGRAM_PATH")); | 
|  | 44 | +    ASSERT_EQ(linear_program_loader.error(), Error::Ok); | 
|  | 45 | +    linear_program_loader_ = std::make_unique<FileDataLoader>( | 
|  | 46 | +        std::move(linear_program_loader.get())); | 
|  | 47 | + | 
|  | 48 | +    Result<FileDataLoader> linear_data_loader = | 
|  | 49 | +        FileDataLoader::from(std::getenv("ET_MODULE_LINEAR_XNN_DATA_PATH")); | 
|  | 50 | +    ASSERT_EQ(linear_data_loader.error(), Error::Ok); | 
|  | 51 | +    linear_data_loader_ = | 
|  | 52 | +        std::make_unique<FileDataLoader>(std::move(linear_data_loader.get())); | 
|  | 53 | + | 
|  | 54 | +    // Create programs. | 
|  | 55 | +    Result<Program> linear_program = Program::load( | 
|  | 56 | +        linear_program_loader_.get(), | 
|  | 57 | +        Program::Verification::InternalConsistency); | 
|  | 58 | +    ASSERT_EQ(linear_program.error(), Error::Ok); | 
|  | 59 | +    linear_program_ = | 
|  | 60 | +        std::make_unique<Program>(std::move(linear_program.get())); | 
|  | 61 | + | 
|  | 62 | +    Result<FlatTensorDataMap> linear_data_map = | 
|  | 63 | +        FlatTensorDataMap::load(linear_data_loader_.get()); | 
|  | 64 | +    EXPECT_EQ(linear_data_map.error(), Error::Ok); | 
|  | 65 | +    linear_data_map_ = | 
|  | 66 | +        std::make_unique<FlatTensorDataMap>(std::move(linear_data_map.get())); | 
|  | 67 | +  } | 
|  | 68 | + | 
|  | 69 | + private: | 
|  | 70 | +  std::unique_ptr<FileDataLoader> linear_program_loader_; | 
|  | 71 | +  std::unique_ptr<FileDataLoader> linear_data_loader_; | 
|  | 72 | + | 
|  | 73 | + protected: | 
|  | 74 | +  std::unique_ptr<Program> linear_program_; | 
|  | 75 | +  std::unique_ptr<FlatTensorDataMap> linear_data_map_; | 
|  | 76 | +}; | 
|  | 77 | + | 
|  | 78 | +TEST_F(DataSeparationTest, TestExternalData) { | 
|  | 79 | +  FlatTensorDataMap* data_map = linear_data_map_.get(); | 
|  | 80 | +  EXPECT_EQ(data_map->get_num_keys().get(), 2); | 
|  | 81 | + | 
|  | 82 | +  Result<const char*> key0 = data_map->get_key(0); | 
|  | 83 | +  EXPECT_EQ(key0.error(), Error::Ok); | 
|  | 84 | +  Result<const char*> key1 = data_map->get_key(1); | 
|  | 85 | +  EXPECT_EQ(key1.error(), Error::Ok); | 
|  | 86 | + | 
|  | 87 | +  // Check that accessing keys out of bounds fails. | 
|  | 88 | +  EXPECT_EQ(data_map->get_key(2).error(), Error::InvalidArgument); | 
|  | 89 | + | 
|  | 90 | +  // Linear.weight | 
|  | 91 | +  Result<FreeableBuffer> data0 = data_map->get_data(key0.get()); | 
|  | 92 | +  EXPECT_EQ(data0.error(), Error::Ok); | 
|  | 93 | +  EXPECT_EQ(data0.get().size(), 36); // 3*3*4 (3*3 matrix, 4 bytes per float) | 
|  | 94 | + | 
|  | 95 | +  // Linear.bias | 
|  | 96 | +  Result<FreeableBuffer> data1 = data_map->get_data(key1.get()); | 
|  | 97 | +  EXPECT_EQ(data1.error(), Error::Ok); | 
|  | 98 | +  EXPECT_EQ(data1.get().size(), 12); // 3*4 (3 vector, 4 bytes per float) | 
|  | 99 | + | 
|  | 100 | +  // Check that accessing non-existent data fails. | 
|  | 101 | +  Result<FreeableBuffer> data2 = data_map->get_data("nonexistent"); | 
|  | 102 | +  EXPECT_EQ(data2.error(), Error::NotFound); | 
| 103 | 103 | } | 
| 104 | 104 | 
 | 
| 105 |  | - TEST_F(DataSeparationTest, TestE2E) { | 
| 106 |  | -   ManagedMemoryManager mmm(kDefaultNonConstMemBytes, kDefaultRuntimeMemBytes); | 
| 107 |  | -   Result<Method> method = linear_program_->load_method( | 
| 108 |  | -       "forward", &mmm.get(), nullptr, linear_data_map_.get()); | 
| 109 |  | -   ASSERT_EQ(method.error(), Error::Ok); | 
| 110 |  | -  | 
| 111 |  | -   // Can execute the method. | 
| 112 |  | -   Error err = method->execute(); | 
| 113 |  | -   ASSERT_EQ(err, Error::Ok); | 
| 114 |  | - } | 
|  | 105 | +TEST_F(DataSeparationTest, TestE2E) { | 
|  | 106 | +  ManagedMemoryManager mmm(kDefaultNonConstMemBytes, kDefaultRuntimeMemBytes); | 
|  | 107 | +  Result<Method> method = linear_program_->load_method( | 
|  | 108 | +      "forward", &mmm.get(), nullptr, linear_data_map_.get()); | 
|  | 109 | +  ASSERT_EQ(method.error(), Error::Ok); | 
|  | 110 | + | 
|  | 111 | +  // Can execute the method. | 
|  | 112 | +  Error err = method->execute(); | 
|  | 113 | +  ASSERT_EQ(err, Error::Ok); | 
|  | 114 | +} | 
0 commit comments