@@ -685,6 +685,11 @@ def test_qnn_backend_argmin(self):
685685 module = Conv2dArgmin () # noqa: F405
686686 sample_input = (torch .randn (16 , 3 , 16 , 16 ),)
687687 self .lower_module_and_test_output (module , sample_input )
688+
689+ def test_qnn_backend_neg (self ):
690+ module = Neg () # noqa: F405
691+ sample_input = (torch .randn (1 , 4 , 16 , 16 ),)
692+ self .lower_module_and_test_output (module , sample_input )
688693
689694class TestQNNFloatingPointModel (TestQNN ):
690695 # TODO: refactor to support different backends
@@ -1421,7 +1426,7 @@ def test_qnn_backend_minimum(self):
14211426 sample_input = (torch .randn (1 , 2 , 3 , 4 ), torch .randn (2 , 3 , 4 ))
14221427 module = self .get_qdq_module (module , sample_input )
14231428 self .lower_module_and_test_output (module , sample_input )
1424-
1429+
14251430 def test_qnn_backend_pad (self ):
14261431 module = Pad () # noqa: F405
14271432 sample_input = (torch .randn ([1 , 8 , 128 ]),)
@@ -1596,6 +1601,12 @@ def test_qnn_backend_argmin(self):
15961601 sample_input = (torch .randn (16 , 3 , 16 , 16 ),)
15971602 module = self .get_qdq_module (module , sample_input )
15981603 self .lower_module_and_test_output (module , sample_input )
1604+
1605+ def test_qnn_backend_neg (self ):
1606+ module = Neg () # noqa: F405
1607+ sample_input = (torch .randn (1 , 4 , 16 , 16 ),)
1608+ module = self .get_qdq_module (module , sample_input )
1609+ self .lower_module_and_test_output (module , sample_input )
15991610
16001611
16011612class TestQNNQuantizedModel (TestQNN ):
0 commit comments