|
| 1 | +# (c) Meta Platforms, Inc. and affiliates. Confidential and proprietary. |
| 2 | + |
| 3 | +# pyre-strict |
| 4 | + |
| 5 | +from typing import Callable |
| 6 | + |
| 7 | +import torch |
| 8 | + |
| 9 | +from executorch.backends.test.compliance_suite import ( |
| 10 | + dtype_test, |
| 11 | + operator_test, |
| 12 | + OperatorTest, |
| 13 | +) |
| 14 | + |
| 15 | +class ClampModel(torch.nn.Module): |
| 16 | + def __init__(self, min_val=None, max_val=None): |
| 17 | + super().__init__() |
| 18 | + self.min_val = min_val |
| 19 | + self.max_val = max_val |
| 20 | + |
| 21 | + def forward(self, x): |
| 22 | + return torch.clamp(x, min=self.min_val, max=self.max_val) |
| 23 | + |
| 24 | +@operator_test |
| 25 | +class TestClamp(OperatorTest): |
| 26 | + @dtype_test |
| 27 | + def test_clamp_dtype(self, dtype, tester_factory: Callable) -> None: |
| 28 | + # Test with different dtypes |
| 29 | + model = ClampModel(min_val=-0.5, max_val=0.5).to(dtype) |
| 30 | + self._test_op(model, (torch.rand(10, 10).to(dtype) * 2 - 1,), tester_factory) |
| 31 | + |
| 32 | + def test_clamp_basic(self, tester_factory: Callable) -> None: |
| 33 | + # Basic test with default parameters |
| 34 | + # Input: tensor with values outside the clamp range |
| 35 | + self._test_op(ClampModel(min_val=-0.5, max_val=0.5), (torch.randn(10, 10),), tester_factory) |
| 36 | + |
| 37 | + def test_clamp_min_only(self, tester_factory: Callable) -> None: |
| 38 | + # Test with only min value specified |
| 39 | + self._test_op(ClampModel(min_val=0.0), (torch.randn(10, 10),), tester_factory) |
| 40 | + |
| 41 | + def test_clamp_max_only(self, tester_factory: Callable) -> None: |
| 42 | + # Test with only max value specified |
| 43 | + self._test_op(ClampModel(max_val=0.0), (torch.randn(10, 10),), tester_factory) |
| 44 | + |
| 45 | + def test_clamp_shapes(self, tester_factory: Callable) -> None: |
| 46 | + # Test with different tensor shapes |
| 47 | + model = ClampModel(min_val=-1.0, max_val=1.0) |
| 48 | + |
| 49 | + # 1D tensor |
| 50 | + self._test_op(model, (torch.randn(20),), tester_factory) |
| 51 | + |
| 52 | + # 2D tensor |
| 53 | + self._test_op(model, (torch.randn(5, 10),), tester_factory) |
| 54 | + |
| 55 | + # 3D tensor |
| 56 | + self._test_op(model, (torch.randn(3, 4, 5),), tester_factory) |
| 57 | + |
| 58 | + # 4D tensor |
| 59 | + self._test_op(model, (torch.randn(2, 3, 4, 5),), tester_factory) |
| 60 | + |
| 61 | + # 5D tensor |
| 62 | + self._test_op(model, (torch.randn(2, 2, 3, 4, 5),), tester_factory) |
| 63 | + |
| 64 | + def test_clamp_values(self, tester_factory: Callable) -> None: |
| 65 | + # Test with different value ranges |
| 66 | + |
| 67 | + # Small values with narrow clamp range |
| 68 | + self._test_op(ClampModel(min_val=-0.01, max_val=0.01), (torch.randn(10, 10) * 0.1,), tester_factory) |
| 69 | + |
| 70 | + # Large values with wide clamp range |
| 71 | + self._test_op(ClampModel(min_val=-100, max_val=100), (torch.randn(10, 10) * 1000,), tester_factory) |
| 72 | + |
| 73 | + # Mixed positive and negative values |
| 74 | + self._test_op(ClampModel(min_val=-5, max_val=5), (torch.randn(10, 10) * 10,), tester_factory) |
| 75 | + |
| 76 | + # All values within clamp range |
| 77 | + self._test_op(ClampModel(min_val=-10, max_val=10), (torch.randn(10, 10),), tester_factory) |
| 78 | + |
| 79 | + # All values outside clamp range (below min) |
| 80 | + self._test_op(ClampModel(min_val=1.0, max_val=2.0), (torch.randn(10, 10) - 10,), tester_factory) |
| 81 | + |
| 82 | + # All values outside clamp range (above max) |
| 83 | + self._test_op(ClampModel(min_val=-2.0, max_val=-1.0), (torch.randn(10, 10) + 10,), tester_factory) |
| 84 | + |
| 85 | + def test_clamp_edge_cases(self, tester_factory: Callable) -> None: |
| 86 | + # Test edge cases |
| 87 | + |
| 88 | + # Zero tensor |
| 89 | + self._test_op(ClampModel(min_val=-1.0, max_val=1.0), (torch.zeros(10, 10),), tester_factory) |
| 90 | + |
| 91 | + # Min equals max |
| 92 | + self._test_op(ClampModel(min_val=0.0, max_val=0.0), (torch.randn(10, 10),), tester_factory) |
| 93 | + |
| 94 | + # Tensor with infinity |
| 95 | + x = torch.tensor([float('inf'), float('-inf'), 1.0, -1.0]) |
| 96 | + self._test_op(ClampModel(min_val=-2.0, max_val=2.0), (x,), tester_factory) |
| 97 | + |
| 98 | + # Tensor with NaN |
| 99 | + x = torch.tensor([float('nan'), 1.0, -1.0]) |
| 100 | + self._test_op(ClampModel(min_val=-2.0, max_val=2.0), (x,), tester_factory) |
| 101 | + |
| 102 | + # Values at exactly min/max bounds |
| 103 | + x = torch.tensor([-1.0, -0.5, 0.0, 0.5, 1.0]) |
| 104 | + self._test_op(ClampModel(min_val=-0.5, max_val=0.5), (x,), tester_factory) |
| 105 | + |
| 106 | + def test_clamp_scalar(self, tester_factory: Callable) -> None: |
| 107 | + # Test with scalar input (1-element tensor) |
| 108 | + model = ClampModel(min_val=-1.0, max_val=1.0) |
| 109 | + self._test_op(model, (torch.tensor([-5.0]),), tester_factory) |
| 110 | + self._test_op(model, (torch.tensor([5.0]),), tester_factory) |
| 111 | + self._test_op(model, (torch.tensor([0.0]),), tester_factory) |
0 commit comments