|
| 1 | +/* |
| 2 | + * Copyright (c) Meta Platforms, Inc. and affiliates. |
| 3 | + * All rights reserved. |
| 4 | + * |
| 5 | + * This source code is licensed under the BSD-style license found in the |
| 6 | + * LICENSE file in the root directory of this source tree. |
| 7 | + */ |
| 8 | + |
| 9 | +// Implementation of helper utilities for creating and configuring LLM runners |
| 10 | + |
| 11 | +#include <executorch/extension/llm/runner/llm_runner_helper.h> |
| 12 | +#include <executorch/extension/llm/runner/stats.h> |
| 13 | +#include <executorch/extension/llm/runner/text_llm_runner.h> |
| 14 | +#include <executorch/extension/llm/runner/text_prefiller.h> |
| 15 | +#include <executorch/extension/llm/runner/text_token_generator.h> |
| 16 | +#include <executorch/runtime/platform/runtime.h> |
| 17 | +#include <pytorch/tokenizers/hf_tokenizer.h> |
| 18 | +#include <pytorch/tokenizers/llama2c_tokenizer.h> |
| 19 | +#include <pytorch/tokenizers/sentencepiece.h> |
| 20 | +#include <pytorch/tokenizers/tiktoken.h> |
| 21 | + |
| 22 | +namespace executorch { |
| 23 | +namespace extension { |
| 24 | +namespace llm { |
| 25 | + |
| 26 | +using ::executorch::extension::Module; |
| 27 | +using ::executorch::runtime::Error; |
| 28 | + |
| 29 | +std::unique_ptr<tokenizers::Tokenizer> load_tokenizer( |
| 30 | + const std::string& tokenizer_path, |
| 31 | + std::unique_ptr<std::vector<std::string>> special_tokens, |
| 32 | + std::optional<std::string> pattern, |
| 33 | + size_t bos_token_index, |
| 34 | + size_t eos_token_index) { |
| 35 | + runtime::runtime_init(); |
| 36 | + auto json_tokenizer = std::make_unique<tokenizers::HFTokenizer>(); |
| 37 | + if (json_tokenizer->load(tokenizer_path) == ::tokenizers::Error::Ok) { |
| 38 | + ET_LOG(Info, "Loaded json tokenizer"); |
| 39 | + return json_tokenizer; |
| 40 | + } |
| 41 | + std::unique_ptr<::tokenizers::Tiktoken> tiktoken_tokenizer; |
| 42 | + if (special_tokens != nullptr && !pattern.has_value()) { |
| 43 | + tiktoken_tokenizer = std::make_unique<::tokenizers::Tiktoken>( |
| 44 | + std::move(special_tokens), bos_token_index, eos_token_index); |
| 45 | + } else if (special_tokens != nullptr && pattern.has_value()) { |
| 46 | + tiktoken_tokenizer = std::make_unique<::tokenizers::Tiktoken>( |
| 47 | + pattern.value(), |
| 48 | + std::move(special_tokens), |
| 49 | + bos_token_index, |
| 50 | + eos_token_index); |
| 51 | + } else { |
| 52 | + tiktoken_tokenizer = std::make_unique<::tokenizers::Tiktoken>(); |
| 53 | + } |
| 54 | + if (tiktoken_tokenizer->load(tokenizer_path) == ::tokenizers::Error::Ok) { |
| 55 | + ET_LOG(Info, "Loaded TikToken tokenizer"); |
| 56 | + return tiktoken_tokenizer; |
| 57 | + } |
| 58 | + |
| 59 | + auto sp_tokenizer = std::make_unique<::tokenizers::SPTokenizer>(); |
| 60 | + if (sp_tokenizer->load(tokenizer_path) == ::tokenizers::Error::Ok) { |
| 61 | + ET_LOG(Info, "Loaded Sentencepiece tokenizer"); |
| 62 | + return sp_tokenizer; |
| 63 | + } |
| 64 | + |
| 65 | + auto bpe_tokenizer = std::make_unique<::tokenizers::Llama2cTokenizer>(); |
| 66 | + if (bpe_tokenizer->load(tokenizer_path) == ::tokenizers::Error::Ok) { |
| 67 | + ET_LOG(Info, "Loaded BPE tokenizer"); |
| 68 | + return bpe_tokenizer; |
| 69 | + } |
| 70 | + |
| 71 | + return nullptr; |
| 72 | +} |
| 73 | + |
| 74 | +std::unordered_map<std::string, int64_t> get_llm_metadata( |
| 75 | + tokenizers::Tokenizer* tokenizer, |
| 76 | + Module* module) { |
| 77 | + // Initialize metadata with default values |
| 78 | + std::unordered_map<std::string, int64_t> metadata({ |
| 79 | + {llm::kEnableDynamicShape, false}, |
| 80 | + {llm::kMaxSeqLen, 128}, |
| 81 | + {llm::kMaxContextLen, 128}, |
| 82 | + {llm::kUseKVCache, true}, |
| 83 | + {llm::kUseSDPAWithKVCache, false}, |
| 84 | + }); |
| 85 | + |
| 86 | + // Read metadata from the model |
| 87 | + auto method_names_result = module->method_names(); |
| 88 | + if (method_names_result.error() != Error::Ok) { |
| 89 | + ET_LOG(Error, "Failed reading method names"); |
| 90 | + return metadata; |
| 91 | + } |
| 92 | + const auto& method_names = method_names_result.get(); |
| 93 | + |
| 94 | + for (auto& pair : metadata) { |
| 95 | + const auto& method_name = pair.first; |
| 96 | + auto& value = pair.second; |
| 97 | + |
| 98 | + if (method_names.count(method_name)) { |
| 99 | + auto get_result = module->get(method_name); |
| 100 | + value = get_result.get().toScalar().to<decltype(metadata)::mapped_type>(); |
| 101 | + } else { |
| 102 | + ET_LOG( |
| 103 | + Info, |
| 104 | + "Method %s not found, using the default value %" PRId64, |
| 105 | + method_name.c_str(), |
| 106 | + value); |
| 107 | + } |
| 108 | + ET_LOG(Info, "Metadata: %s = %" PRId64, method_name.c_str(), value); |
| 109 | + } |
| 110 | + // Set tokenizer-related metadata |
| 111 | + metadata[llm::kBosId] = tokenizer->bos_tok(); |
| 112 | + metadata[llm::kVocabSize] = tokenizer->vocab_size(); |
| 113 | + return metadata; |
| 114 | +} |
| 115 | + |
| 116 | +std::unordered_set<uint64_t> get_eos_ids( |
| 117 | + tokenizers::Tokenizer* tokenizer, |
| 118 | + Module* module) { |
| 119 | + std::unordered_set<uint64_t> eos_ids = {tokenizer->eos_tok()}; |
| 120 | + // Get EOS IDs if available |
| 121 | + auto method_names_result = module->method_names(); |
| 122 | + if (method_names_result.error() != Error::Ok) { |
| 123 | + ET_LOG(Error, "Failed reading method names"); |
| 124 | + return eos_ids; |
| 125 | + } |
| 126 | + const auto& method_names = method_names_result.get(); |
| 127 | + |
| 128 | + if (method_names.count(llm::kEosIds)) { |
| 129 | + eos_ids.clear(); |
| 130 | + auto execute_result = module->execute(llm::kEosIds); |
| 131 | + if (execute_result.error() != Error::Ok) { |
| 132 | + ET_LOG(Error, "Failed to execute %s", llm::kEosIds); |
| 133 | + return eos_ids; |
| 134 | + } |
| 135 | + for (const auto& eos_id : execute_result.get()) { |
| 136 | + auto value = eos_id.toScalar().to<int64_t>(); |
| 137 | + eos_ids.emplace(value); |
| 138 | + ET_LOG(Info, "eos_id = %" PRId64, value); |
| 139 | + } |
| 140 | + } |
| 141 | + return eos_ids; |
| 142 | +} |
| 143 | + |
| 144 | +std::unique_ptr<TextLLMRunner> create_text_llm_runner( |
| 145 | + const std::string& model_path, |
| 146 | + std::unique_ptr<::tokenizers::Tokenizer> tokenizer, |
| 147 | + std::optional<const std::string> data_path, |
| 148 | + float temperature) { |
| 149 | + // Sanity check tokenizer |
| 150 | + if (!tokenizer || !tokenizer->is_loaded()) { |
| 151 | + ET_LOG(Error, "Tokenizer is null or not loaded"); |
| 152 | + return nullptr; |
| 153 | + } |
| 154 | + |
| 155 | + // Create the Module |
| 156 | + std::unique_ptr<Module> module; |
| 157 | + if (data_path.has_value()) { |
| 158 | + module = std::make_unique<Module>( |
| 159 | + model_path, data_path.value(), Module::LoadMode::File); |
| 160 | + } else { |
| 161 | + module = std::make_unique<Module>(model_path, Module::LoadMode::File); |
| 162 | + } |
| 163 | + |
| 164 | + // Get metadata from Module |
| 165 | + ET_LOG(Info, "Reading metadata from model"); |
| 166 | + auto metadata = llm::get_llm_metadata(tokenizer.get(), module.get()); |
| 167 | + |
| 168 | + auto eos_ids = std::make_unique<std::unordered_set<uint64_t>>( |
| 169 | + llm::get_eos_ids(tokenizer.get(), module.get())); |
| 170 | + |
| 171 | + // Create IOManager |
| 172 | + std::unique_ptr<IOManager> io_manager = std::make_unique<IOManager>(); |
| 173 | + |
| 174 | + // Create text_decoder_runner. Use a shared_ptr so that it can be shared with |
| 175 | + // TextPrefiller and TextTokenGenerator |
| 176 | + auto text_decoder_runner = |
| 177 | + std::make_unique<TextDecoderRunner>(module.get(), io_manager.get()); |
| 178 | + |
| 179 | + // Create text_prefiller |
| 180 | + auto text_prefiller = std::make_unique<TextPrefiller>( |
| 181 | + text_decoder_runner.get(), |
| 182 | + metadata.at(kUseKVCache), |
| 183 | + metadata.at(kEnableDynamicShape), |
| 184 | + metadata.at(kMaxSeqLen)); |
| 185 | + |
| 186 | + // Create text_token_generator with stats |
| 187 | + auto stats = std::make_unique<Stats>(); |
| 188 | + auto text_token_generator = std::make_unique<TextTokenGenerator>( |
| 189 | + tokenizer.get(), |
| 190 | + text_decoder_runner.get(), |
| 191 | + metadata.at(kUseKVCache), |
| 192 | + std::move(eos_ids), |
| 193 | + stats.get()); |
| 194 | + |
| 195 | + // Create and return the Runner instance |
| 196 | + return std::make_unique<TextLLMRunner>( |
| 197 | + std::move(metadata), |
| 198 | + std::move(tokenizer), |
| 199 | + std::move(module), |
| 200 | + std::move(text_decoder_runner), |
| 201 | + std::move(text_prefiller), |
| 202 | + std::move(io_manager), |
| 203 | + std::move(text_token_generator), |
| 204 | + std::move(stats), |
| 205 | + temperature); |
| 206 | +} |
| 207 | + |
| 208 | +} // namespace llm |
| 209 | +} // namespace extension |
| 210 | +} // namespace executorch |
0 commit comments