|
| 1 | +from typing import cast, Dict |
| 2 | + |
| 3 | +import executorch.backends.qualcomm.python.PyQnnWrapperAdaptor as PyQnnWrapper |
| 4 | +import torch |
| 5 | + |
| 6 | +from executorch.exir.dialects._ops import ops as exir_ops |
| 7 | + |
| 8 | +from .node_visitor import NodeVisitor |
| 9 | +from .node_visitor_manager import register_node_visitor |
| 10 | +from .qnn_constants import ( |
| 11 | + OpScatterNd, |
| 12 | + QNN_OP_PACKAGE_NAME_QTI_AISW, |
| 13 | +) |
| 14 | + |
| 15 | + |
| 16 | +@register_node_visitor |
| 17 | +class SliceScatterVisitor(NodeVisitor): |
| 18 | + target = ["aten.slice_scatter.default"] |
| 19 | + |
| 20 | + def __init__(self, *args) -> None: |
| 21 | + super().__init__(*args) |
| 22 | + |
| 23 | + def define_node( |
| 24 | + self, |
| 25 | + node: torch.fx.Node, |
| 26 | + nodes_to_wrappers: Dict[torch.fx.Node, PyQnnWrapper.TensorWrapper], |
| 27 | + ) -> PyQnnWrapper.PyQnnOpWrapper: |
| 28 | + input_node = self.get_node(node.args[0]) |
| 29 | + input_tensor = self.get_tensor(input_node, node) |
| 30 | + input_tensor_wrapper = self.define_tensor( |
| 31 | + input_node, |
| 32 | + node, |
| 33 | + input_tensor, |
| 34 | + PyQnnWrapper.Qnn_TensorType_t.QNN_TENSOR_TYPE_NATIVE, |
| 35 | + nodes_to_wrappers, |
| 36 | + ) |
| 37 | + |
| 38 | + value_node = self.get_node(node.args[1]) |
| 39 | + value_tensor = self.get_tensor(value_node, node) |
| 40 | + value_tensor_wrapper = self.define_tensor( |
| 41 | + value_node, |
| 42 | + node, |
| 43 | + value_tensor, |
| 44 | + PyQnnWrapper.Qnn_TensorType_t.QNN_TENSOR_TYPE_NATIVE, |
| 45 | + nodes_to_wrappers, |
| 46 | + ) |
| 47 | + |
| 48 | + output_tensor = self.get_tensor(node, node) |
| 49 | + output_tensor_wrapper = self.define_tensor( |
| 50 | + node, |
| 51 | + node, |
| 52 | + output_tensor, |
| 53 | + PyQnnWrapper.Qnn_TensorType_t.QNN_TENSOR_TYPE_NATIVE, |
| 54 | + nodes_to_wrappers, |
| 55 | + ) |
| 56 | + dim = cast(int, node.args[2]) |
| 57 | + if dim < 0: |
| 58 | + dim = dim % len(input_tensor.shape) |
| 59 | + |
| 60 | + start = 0 if node.args[3] is None else cast(int, node.args[3]) |
| 61 | + if start < 0: |
| 62 | + start = start % input_tensor.shape[dim] |
| 63 | + |
| 64 | + if len(node.args) > 4: |
| 65 | + end = min(cast(int, node.args[4]), input_tensor.shape[dim]) |
| 66 | + if end < 0: |
| 67 | + end = end % input_tensor.shape[dim] |
| 68 | + else: |
| 69 | + end = input_tensor.shape[dim] |
| 70 | + |
| 71 | + step = node.args[5] if len(node.args) > 5 else 1 |
| 72 | + |
| 73 | + target_index_shape = [] |
| 74 | + ranges = [] |
| 75 | + # Collect the index |
| 76 | + for i in range(dim+1): |
| 77 | + if i == dim: |
| 78 | + target_range = torch.tensor(range(start, end, step), dtype=torch.int32) |
| 79 | + target_index_shape.append(target_range.size(-1)) |
| 80 | + ranges.append(target_range) |
| 81 | + break |
| 82 | + else: |
| 83 | + size = input_tensor.size(i) |
| 84 | + target_index_shape.append(size) |
| 85 | + ranges.append(torch.arange(size, dtype=torch.int32)) |
| 86 | + # last dim means x-tuple index |
| 87 | + target_index_shape.append(dim+1) |
| 88 | + target_index_tensor = torch.cartesian_prod(*ranges).reshape(target_index_shape).contiguous() |
| 89 | + |
| 90 | + |
| 91 | + target_index_node = torch.fx.Node( |
| 92 | + node.graph, |
| 93 | + node.name + "_target_index", |
| 94 | + "call_function", |
| 95 | + exir_ops.edge.aten.tensor.default, |
| 96 | + (), # args |
| 97 | + {}, # kwargs |
| 98 | + ) |
| 99 | + target_index_tensor_wrapper = self.define_tensor( |
| 100 | + target_index_node, |
| 101 | + node, |
| 102 | + target_index_tensor, |
| 103 | + PyQnnWrapper.Qnn_TensorType_t.QNN_TENSOR_TYPE_STATIC, |
| 104 | + nodes_to_wrappers, |
| 105 | + ) |
| 106 | + |
| 107 | + index_put_op = PyQnnWrapper.PyQnnOpWrapper( |
| 108 | + node.name, |
| 109 | + QNN_OP_PACKAGE_NAME_QTI_AISW, |
| 110 | + OpScatterNd.op_name, |
| 111 | + ) |
| 112 | + index_put_op.AddInputTensors( |
| 113 | + [ |
| 114 | + input_tensor_wrapper, |
| 115 | + target_index_tensor_wrapper, |
| 116 | + value_tensor_wrapper, |
| 117 | + ] |
| 118 | + ) |
| 119 | + index_put_op.AddOutputTensors([output_tensor_wrapper]) |
| 120 | + |
| 121 | + return index_put_op |
0 commit comments