You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: docs/source/backends-coreml.md
+1-1Lines changed: 1 addition & 1 deletion
Display the source diff
Display the rich diff
Original file line number
Diff line number
Diff line change
@@ -61,7 +61,7 @@ The Core ML partitioner API allows for configuration of the model delegation to
61
61
-`skip_ops_for_coreml_delegation`: Allows you to skip ops for delegation by Core ML. By default, all ops that Core ML supports will be delegated. See [here](https://github.com/pytorch/executorch/blob/14ff52ff89a89c074fc6c14d3f01683677783dcd/backends/apple/coreml/test/test_coreml_partitioner.py#L42) for an example of skipping an op for delegation.
62
62
-`compile_specs`: A list of `CompileSpec`s for the Core ML backend. These control low-level details of Core ML delegation, such as the compute unit (CPU, GPU, ANE), the iOS deployment target, and the compute precision (FP16, FP32). These are discussed more below.
63
63
-`take_over_mutable_buffer`: A boolean that indicates whether PyTorch mutable buffers in stateful models should be converted to [Core ML `MLState`](https://developer.apple.com/documentation/coreml/mlstate). If set to `False`, mutable buffers in the PyTorch graph are converted to graph inputs and outputs to the Core ML lowered module under the hood. Generally, setting `take_over_mutable_buffer` to true will result in better performance, but using `MLState` requires iOS >= 18.0, macOS >= 15.0, and Xcode >= 16.0.
64
-
-`take_over_constant_data`: A boolean that indicates whether PyTorch constant data like model weights should be consumed by the Core ML delegate. If set to False, constant data is passed to the Core ML delegate as inputs. By deafault, take_over_constant_data=True.
64
+
-`take_over_constant_data`: A boolean that indicates whether PyTorch constant data like model weights should be consumed by the Core ML delegate. If set to False, constant data is passed to the Core ML delegate as inputs. By default, take_over_constant_data=True.
65
65
-`lower_full_graph`: A boolean that indicates whether the entire graph must be lowered to Core ML. If set to True and Core ML does not support an op, an error is raised during lowering. If set to False and Core ML does not support an op, the op is executed on the CPU by ExecuTorch. Although setting `lower_full_graph`=False can allow a model to lower where it would otherwise fail, it can introduce performance overhead in the model when there are unsupported ops. You will see warnings about unsupported ops during lowering if there are any. By default, `lower_full_graph`=False.
Copy file name to clipboardExpand all lines: docs/source/devtools-overview.md
+1-1Lines changed: 1 addition & 1 deletion
Display the source diff
Display the rich diff
Original file line number
Diff line number
Diff line change
@@ -41,6 +41,6 @@ More details are available in the [ETDump documentation](etdump.md) on how to ge
41
41
42
42
43
43
### Inspector APIs
44
-
The Inspector Python APIs are the main user enrty point into the Developer Tools. They join the data sourced from ETDump and ETRecord to give users access to all the performance and debug data sourced from the runtime along with linkage back to eager model source code and module hierarchy in an easy to use API.
44
+
The Inspector Python APIs are the main user entry point into the Developer Tools. They join the data sourced from ETDump and ETRecord to give users access to all the performance and debug data sourced from the runtime along with linkage back to eager model source code and module hierarchy in an easy to use API.
45
45
46
46
More details are available in the [Inspector API documentation](model-inspector.rst) on how to use the Inspector APIs.
Copy file name to clipboardExpand all lines: docs/source/getting-started-architecture.md
+1-1Lines changed: 1 addition & 1 deletion
Display the source diff
Display the rich diff
Original file line number
Diff line number
Diff line change
@@ -89,6 +89,6 @@ _Executor_ is the entry point to load the program and execute it. The execution
89
89
90
90
## Developer Tools
91
91
92
-
It should be efficient for users to go from research to production using the flow above. Productivity is essentially important, for users to author, optimize and deploy their models. We provide [ExecuTorch Developer Tools](devtools-overview.md) to improve productivity. The Developer Tools are not in the diagram. Instead it's a tool set that covers the developer workflow in all three phases.
92
+
It should be efficient for users to go from research to production using the flow above. Productivity is especially important, for users to author, optimize and deploy their models. We provide [ExecuTorch Developer Tools](devtools-overview.md) to improve productivity. The Developer Tools are not in the diagram. Instead it's a tool set that covers the developer workflow in all three phases.
93
93
94
94
During the program preparation and execution, users can use the ExecuTorch Developer Tools to profile, debug, or visualize the program. Since the end-to-end flow is within the PyTorch ecosystem, users can correlate and display performance data along with graph visualization as well as direct references to the program source code and model hierarchy. We consider this to be a critical component for quickly iterating and lowering PyTorch programs to edge devices and environments.
0 commit comments