|  | 
|  | 1 | +# Copyright 2025 Arm Limited and/or its affiliates. | 
|  | 2 | +# | 
|  | 3 | +# This source code is licensed under the BSD-style license found in the | 
|  | 4 | +# LICENSE file in the root directory of this source tree. | 
|  | 5 | + | 
|  | 6 | + | 
|  | 7 | +import torch | 
|  | 8 | +from executorch.backends.arm.test.common import parametrize | 
|  | 9 | +from executorch.backends.cortex_m.test.tester import ( | 
|  | 10 | +    CortexMTester, | 
|  | 11 | +    McuTestCase, | 
|  | 12 | +    ramp_tensor, | 
|  | 13 | +) | 
|  | 14 | + | 
|  | 15 | + | 
|  | 16 | +class CortexMMm(torch.nn.Module): | 
|  | 17 | +    def forward(self, x, y): | 
|  | 18 | +        return torch.mm(x, y) | 
|  | 19 | + | 
|  | 20 | +    ops_before_transforms = { | 
|  | 21 | +        "executorch_exir_dialects_edge__ops_aten_mm_default": 1, | 
|  | 22 | +        "executorch_exir_dialects_edge__ops_quantized_decomposed_quantize_per_tensor_default": 2, | 
|  | 23 | +        "executorch_exir_dialects_edge__ops_quantized_decomposed_dequantize_per_tensor_default": 3, | 
|  | 24 | +    } | 
|  | 25 | + | 
|  | 26 | +    ops_after_transforms = { | 
|  | 27 | +        "executorch_exir_dialects_edge__ops_cortex_m_quantized_linear_default": 1, | 
|  | 28 | +        "executorch_exir_dialects_edge__ops_cortex_m_quantize_per_tensor_default": 1, | 
|  | 29 | +        "executorch_exir_dialects_edge__ops_cortex_m_dequantize_per_tensor_default": 1, | 
|  | 30 | +    } | 
|  | 31 | + | 
|  | 32 | + | 
|  | 33 | +class CortexMBmm(torch.nn.Module): | 
|  | 34 | +    def forward(self, x, y): | 
|  | 35 | +        return torch.bmm(x, y) | 
|  | 36 | + | 
|  | 37 | +    ops_before_transforms = { | 
|  | 38 | +        "executorch_exir_dialects_edge__ops_aten_bmm_default": 1, | 
|  | 39 | +        "executorch_exir_dialects_edge__ops_quantized_decomposed_quantize_per_tensor_default": 2, | 
|  | 40 | +        "executorch_exir_dialects_edge__ops_quantized_decomposed_dequantize_per_tensor_default": 3, | 
|  | 41 | +    } | 
|  | 42 | + | 
|  | 43 | +    ops_after_transforms = { | 
|  | 44 | +        "executorch_exir_dialects_edge__ops_cortex_m_quantized_linear_default": 1, | 
|  | 45 | +        "executorch_exir_dialects_edge__ops_cortex_m_quantize_per_tensor_default": 1, | 
|  | 46 | +        "executorch_exir_dialects_edge__ops_cortex_m_dequantize_per_tensor_default": 1, | 
|  | 47 | +    } | 
|  | 48 | + | 
|  | 49 | + | 
|  | 50 | +class CortexMAddmm(torch.nn.Module): | 
|  | 51 | +    def forward(self, x, y, z, alpha=None, beta=None): | 
|  | 52 | +        return torch.addmm(beta, x, alpha, y, z) | 
|  | 53 | + | 
|  | 54 | +    ops_before_transforms = { | 
|  | 55 | +        "executorch_exir_dialects_edge__ops_aten_addmm_default": 1, | 
|  | 56 | +        "executorch_exir_dialects_edge__ops_quantized_decomposed_quantize_per_tensor_default": 2, | 
|  | 57 | +        "executorch_exir_dialects_edge__ops_quantized_decomposed_dequantize_per_tensor_default": 3, | 
|  | 58 | +    } | 
|  | 59 | + | 
|  | 60 | +    ops_after_transforms = { | 
|  | 61 | +        "executorch_exir_dialects_edge__ops_cortex_m_quantized_linear_default": 1, | 
|  | 62 | +        "executorch_exir_dialects_edge__ops_cortex_m_quantize_per_tensor_default": 1, | 
|  | 63 | +        "executorch_exir_dialects_edge__ops_cortex_m_dequantize_per_tensor_default": 1, | 
|  | 64 | +    } | 
|  | 65 | + | 
|  | 66 | + | 
|  | 67 | +class CortexMAt(CortexMMm): | 
|  | 68 | +    def forward(self, x, y): | 
|  | 69 | +        return x @ y | 
|  | 70 | + | 
|  | 71 | + | 
|  | 72 | +class CortexMMatmul(CortexMMm): | 
|  | 73 | +    def forward(self, x, y): | 
|  | 74 | +        return torch.matmul(x, y) | 
|  | 75 | + | 
|  | 76 | + | 
|  | 77 | +class CortexMLinear(CortexMMatmul): | 
|  | 78 | +    def __init__(self, *args, **kwargs): | 
|  | 79 | +        super().__init__() | 
|  | 80 | +        self.linear = torch.nn.Linear(*args, bias=False) | 
|  | 81 | + | 
|  | 82 | +    def forward(self, x): | 
|  | 83 | +        return self.linear(x) | 
|  | 84 | + | 
|  | 85 | + | 
|  | 86 | +class CortexMLinearBias(CortexMAddmm): | 
|  | 87 | +    def __init__(self, *args, **kwargs): | 
|  | 88 | +        super().__init__() | 
|  | 89 | +        self.linear = torch.nn.Linear(*args, bias=True) | 
|  | 90 | + | 
|  | 91 | +    def forward(self, x): | 
|  | 92 | +        return self.linear(x) | 
|  | 93 | + | 
|  | 94 | + | 
|  | 95 | +test_cases = { | 
|  | 96 | +    "mm": McuTestCase( | 
|  | 97 | +        model=CortexMMm(), | 
|  | 98 | +        example_inputs=( | 
|  | 99 | +            ramp_tensor(0, 10, (1, 16)), | 
|  | 100 | +            ramp_tensor(0, 10, (16, 16)), | 
|  | 101 | +        ), | 
|  | 102 | +    ), | 
|  | 103 | +    "bmm": McuTestCase( | 
|  | 104 | +        model=CortexMBmm(), | 
|  | 105 | +        example_inputs=( | 
|  | 106 | +            ramp_tensor(0, 10, (1, 16, 16)), | 
|  | 107 | +            ramp_tensor(0, 10, (1, 16, 16)), | 
|  | 108 | +        ), | 
|  | 109 | +    ), | 
|  | 110 | +    "addmm": McuTestCase( | 
|  | 111 | +        model=CortexMAddmm(), | 
|  | 112 | +        example_inputs=( | 
|  | 113 | +            ramp_tensor(0, 10, (1, 16)), | 
|  | 114 | +            ramp_tensor(0, 10, (16, 16)), | 
|  | 115 | +            ramp_tensor(0, 10, (16, 16)), | 
|  | 116 | +            2, | 
|  | 117 | +            4, | 
|  | 118 | +        ), | 
|  | 119 | +    ), | 
|  | 120 | +    "addmm_scalars": McuTestCase( | 
|  | 121 | +        model=CortexMAddmm(), | 
|  | 122 | +        example_inputs=( | 
|  | 123 | +            ramp_tensor(0, 10, (1, 16)), | 
|  | 124 | +            ramp_tensor(0, 10, (16, 16)), | 
|  | 125 | +            ramp_tensor(0, 10, (16, 16)), | 
|  | 126 | +        ), | 
|  | 127 | +    ), | 
|  | 128 | +    "@-operator": McuTestCase( | 
|  | 129 | +        model=CortexMAt(), | 
|  | 130 | +        example_inputs=( | 
|  | 131 | +            ramp_tensor(0, 10, (1, 16)), | 
|  | 132 | +            ramp_tensor(0, 10, (16, 16)), | 
|  | 133 | +        ), | 
|  | 134 | +    ), | 
|  | 135 | +    "matmul": McuTestCase( | 
|  | 136 | +        model=CortexMMatmul(), | 
|  | 137 | +        example_inputs=( | 
|  | 138 | +            ramp_tensor(0, 10, (1, 16)), | 
|  | 139 | +            ramp_tensor(0, 10, (16, 16)), | 
|  | 140 | +        ), | 
|  | 141 | +    ), | 
|  | 142 | +    "linear_rank1": McuTestCase( | 
|  | 143 | +        model=CortexMLinear(2, 3), | 
|  | 144 | +        example_inputs=(ramp_tensor(-1, 1, (2,)),), | 
|  | 145 | +    ), | 
|  | 146 | +    "linear_rank2_pos": McuTestCase( | 
|  | 147 | +        model=CortexMLinear(8, 3), | 
|  | 148 | +        example_inputs=(ramp_tensor(0, 10, (2, 8)),), | 
|  | 149 | +    ), | 
|  | 150 | +    "linear_rank3_neg": McuTestCase( | 
|  | 151 | +        model=CortexMLinear(5, 3), | 
|  | 152 | +        example_inputs=(ramp_tensor(-40, 0, (4, 2, 5)),), | 
|  | 153 | +    ), | 
|  | 154 | +    "linear_rank4": McuTestCase( | 
|  | 155 | +        model=CortexMLinear(16, 32), | 
|  | 156 | +        example_inputs=(ramp_tensor(-100, 100, (2, 1, 2, 16)),), | 
|  | 157 | +    ), | 
|  | 158 | +    "linear_rank5": McuTestCase( | 
|  | 159 | +        model=CortexMLinear(4, 3), | 
|  | 160 | +        example_inputs=(ramp_tensor(-2, 2, (5, 2, 1, 2, 4)),), | 
|  | 161 | +    ), | 
|  | 162 | +    "linear_bias": McuTestCase( | 
|  | 163 | +        model=CortexMLinearBias(61, 37), | 
|  | 164 | +        example_inputs=(ramp_tensor(0, 10, (8, 61)),), | 
|  | 165 | +    ), | 
|  | 166 | +} | 
|  | 167 | + | 
|  | 168 | +dialect_xfails = { | 
|  | 169 | +    "mm": ("torch.mm ops are currently not quantized", RuntimeError), | 
|  | 170 | +    "bmm": ("torch.bmm ops are currently not quantized", RuntimeError), | 
|  | 171 | +    "addmm": ("torch.addmm ops are currently not quantized", RuntimeError), | 
|  | 172 | +    "addmm_scalars": ("torch.addmm ops are currently not quantized", RuntimeError), | 
|  | 173 | +    "matmul": ("torch.matmul ops are currently not quantized", RuntimeError), | 
|  | 174 | +    "@-operator": ("@ ops are currently not quantized", RuntimeError), | 
|  | 175 | +    "linear_rank1": ("Only rank 2 linear ops are fused currently", RuntimeError), | 
|  | 176 | +    "linear_rank2_pos": ("name 'int32' is not defined", NameError), | 
|  | 177 | +    "linear_rank3_neg": ("Only rank 2 linear ops are fused currently", RuntimeError), | 
|  | 178 | +    "linear_rank4": ("Only rank 2 linear ops are fused currently", RuntimeError), | 
|  | 179 | +    "linear_rank5": ("Only rank 2 linear ops are fused currently", RuntimeError), | 
|  | 180 | +    "linear_bias": ("name 'int32' is not defined", NameError), | 
|  | 181 | +} | 
|  | 182 | + | 
|  | 183 | + | 
|  | 184 | +@parametrize("test_case", test_cases, dialect_xfails) | 
|  | 185 | +def test_dialect_linear(test_case): | 
|  | 186 | +    tester = CortexMTester(test_case.model, test_case.example_inputs) | 
|  | 187 | +    tester.test_dialect( | 
|  | 188 | +        test_case.model.ops_before_transforms, test_case.model.ops_after_transforms | 
|  | 189 | +    ) | 
|  | 190 | + | 
|  | 191 | + | 
|  | 192 | +implementation_xfails = { | 
|  | 193 | +    "mm": ("torch.mm ops are currently not quantized", RuntimeError), | 
|  | 194 | +    "bmm": ("torch.bmm ops are currently not quantized", RuntimeError), | 
|  | 195 | +    "addmm": ("torch.addmm ops are currently not quantized", RuntimeError), | 
|  | 196 | +    "addmm_scalars": ("torch.addmm ops are currently not quantized", RuntimeError), | 
|  | 197 | +    "matmul": ("torch.matmul ops are currently not quantized", RuntimeError), | 
|  | 198 | +    "@-operator": ("@ ops are currently not quantized", RuntimeError), | 
|  | 199 | +    "linear_rank1": ("Only rank 2 linear ops are fused currently", RuntimeError), | 
|  | 200 | +    "linear_rank2_pos": ("Output 0 does not match reference output.", AssertionError), | 
|  | 201 | +    "linear_rank3_neg": ("Only rank 2 linear ops are fused currently", RuntimeError), | 
|  | 202 | +    "linear_rank4": ("Only rank 2 linear ops are fused currently", RuntimeError), | 
|  | 203 | +    "linear_rank5": ("Only rank 2 linear ops are fused currently", RuntimeError), | 
|  | 204 | +    "linear_bias": ("Output 0 does not match reference output.", AssertionError), | 
|  | 205 | +} | 
|  | 206 | + | 
|  | 207 | + | 
|  | 208 | +@parametrize("test_case", test_cases, implementation_xfails) | 
|  | 209 | +def test_implementation_linear(test_case): | 
|  | 210 | +    tester = CortexMTester(test_case.model, test_case.example_inputs) | 
|  | 211 | +    tester.test_implementation() | 
0 commit comments