@@ -1590,6 +1590,35 @@ def forward(self, x):
15901590            (torch .tensor ([[[0 , 1 ], [0 , 1 ]], [[4 , 2 ], [3 , 3 ]]]),),
15911591        )
15921592
1593+     # def test_vulkan_backend_conv_with_dim_order(self): 
1594+     #     class Conv2dSequential(torch.nn.Module): 
1595+     #         def __init__(self, bias=True, channel_last=False): 
1596+     #             super().__init__() 
1597+     #             self.first = torch.nn.Conv2d( 
1598+     #                 in_channels=1, 
1599+     #                 out_channels=3, 
1600+     #                 kernel_size=(3, 3), 
1601+     #                 padding=1, 
1602+     #                 bias=bias, 
1603+     #             ) 
1604+     #             self.second = torch.nn.Conv2d( 
1605+     #                 in_channels=3, 
1606+     #                 out_channels=2, 
1607+     #                 kernel_size=(3, 3), 
1608+     #                 padding=1, 
1609+     #                 bias=bias, 
1610+     #             ) 
1611+ 
1612+     #         def forward(self, x): 
1613+     #             x = x.to(memory_format=torch.channels_last) 
1614+     #             return self.second(self.first(x)) 
1615+ 
1616+     #     self.lower_module_and_test_output( 
1617+     #         Conv2dSequential(), 
1618+     #         (torch.rand(size=[1, 1, 3, 3]),), 
1619+     # 
1620+     #     ) 
1621+ 
15931622    def  test_vulkan_backend_flip (self ):
15941623        class  FlipModule (torch .nn .Module ):
15951624            def  __init__ (self ):
@@ -1654,32 +1683,3 @@ def forward(self, x):
16541683            GridPriorsModule (),
16551684            (torch .rand (size = [1 , 5 , 2 , 3 ]),),
16561685        )
1657- 
1658-     # def test_vulkan_backend_conv_with_dim_order(self): 
1659-     #     class Conv2dSequential(torch.nn.Module): 
1660-     #         def __init__(self, bias=True, channel_last=False): 
1661-     #             super().__init__() 
1662-     #             self.first = torch.nn.Conv2d( 
1663-     #                 in_channels=1, 
1664-     #                 out_channels=3, 
1665-     #                 kernel_size=(3, 3), 
1666-     #                 padding=1, 
1667-     #                 bias=bias, 
1668-     #             ) 
1669-     #             self.second = torch.nn.Conv2d( 
1670-     #                 in_channels=3, 
1671-     #                 out_channels=2, 
1672-     #                 kernel_size=(3, 3), 
1673-     #                 padding=1, 
1674-     #                 bias=bias, 
1675-     #             ) 
1676- 
1677-     #         def forward(self, x): 
1678-     #             x = x.to(memory_format=torch.channels_last) 
1679-     #             return self.second(self.first(x)) 
1680- 
1681-     #     self.lower_module_and_test_output( 
1682-     #         Conv2dSequential(), 
1683-     #         (torch.rand(size=[1, 1, 3, 3]),), 
1684-     # 
1685-     #     ) 
0 commit comments