| 
 | 1 | +/*  | 
 | 2 | + * Copyright (c) Meta Platforms, Inc. and affiliates.  | 
 | 3 | + * All rights reserved.  | 
 | 4 | + *  | 
 | 5 | + * This source code is licensed under the BSD-style license found in the  | 
 | 6 | + * LICENSE file in the root directory of this source tree.  | 
 | 7 | + */  | 
 | 8 | + | 
 | 9 | +#version 450 core  | 
 | 10 | + | 
 | 11 | +#define PRECISION ${PRECISION}  | 
 | 12 | + | 
 | 13 | +#define T ${buffer_scalar_type(DTYPE)}  | 
 | 14 | +#define VEC4_T ${buffer_gvec_type(DTYPE, 4)}  | 
 | 15 | + | 
 | 16 | +#define TILE_ROWS ${TILE_ROWS}  | 
 | 17 | + | 
 | 18 | +#define NGROUPS 8  | 
 | 19 | +#define NWORKERS 8  | 
 | 20 | + | 
 | 21 | +${define_required_extensions(DTYPE)}  | 
 | 22 | +$if WEIGHT_STORAGE == "buffer":  | 
 | 23 | +  ${define_required_extensions("uint8")}  | 
 | 24 | + | 
 | 25 | +#extension GL_EXT_control_flow_attributes : require  | 
 | 26 | + | 
 | 27 | +layout(std430) buffer;  | 
 | 28 | + | 
 | 29 | +${layout_declare_tensor(B, "w", "t_out", DTYPE, OUT_STORAGE, is_scalar_array=False)}  | 
 | 30 | +${layout_declare_tensor(B, "r", "t_mat1", DTYPE, IN_STORAGE, is_scalar_array=False)}  | 
 | 31 | +${layout_declare_tensor(B, "r", "t_qmat2", "uint8", WEIGHT_STORAGE, is_scalar_array=False)}  | 
 | 32 | +${layout_declare_tensor(B, "r", "t_qparams", DTYPE, "buffer", is_scalar_array=False)}  | 
 | 33 | + | 
 | 34 | +layout(push_constant) uniform restrict Block {  | 
 | 35 | +  ivec4 out_sizes;  | 
 | 36 | +  ivec4 mat1_sizes;  | 
 | 37 | +  ivec4 qmat2_sizes;  | 
 | 38 | +};  | 
 | 39 | + | 
 | 40 | +layout(local_size_x_id = 0, local_size_y_id = 1, local_size_z_id = 2) in;  | 
 | 41 | + | 
 | 42 | +layout(constant_id = 3) const int group_size = 64;  | 
 | 43 | + | 
 | 44 | +shared VEC4_T partial_sums[NGROUPS][NWORKERS][TILE_ROWS][2];  | 
 | 45 | + | 
 | 46 | +/*  | 
 | 47 | + * This shader computes a linear operator between a floating point input matrix  | 
 | 48 | + * x and a weights matrix that is quantized to 4 bits. Please refer to the  | 
 | 49 | + * q_4w_linear shader for more details.  | 
 | 50 | + *  | 
 | 51 | + * This shader implements a co-operative algorithm to compute the output. The  | 
 | 52 | + * work group size is {NGROUP, 1, NWORKERS}, and each group of NWORKERS threads  | 
 | 53 | + * cooperative to compute TILE_ROWS * 2 output texels. Therefore,  | 
 | 54 | + * NGROUP * TILE_ROWS * 2 output texels are computed across one work group.  | 
 | 55 | + *  | 
 | 56 | + * The threads co-operate by each thread computing a partial reduction along the  | 
 | 57 | + * K dimension. To illustrate the computation, consider a scalar variant of the  | 
 | 58 | + * algorithm that computes the dot product of 2 vectors. Also assume that  | 
 | 59 | + * NWORKERS is 8.  | 
 | 60 | + *  | 
 | 61 | + * Thread 1 in each group will compute:  | 
 | 62 | + * (mat1[0] * mat2[0]) + (mat1[8] * mat2[8]) + (mat1[16] * mat2[16]) + ...  | 
 | 63 | + *  | 
 | 64 | + * Thread 2 in each group will compute:  | 
 | 65 | + * (mat1[1] * mat2[1]) + (mat2[9] * mat2[9]) + (mat1[17] * mat2[17]) + ...  | 
 | 66 | + *  | 
 | 67 | + * Thread 3 in each group will compute:  | 
 | 68 | + * (mat1[2] * mat2[2]) + (mat2[10] * mat2[10]) + (mat1[18] * mat2[18]) + ...  | 
 | 69 | + *  | 
 | 70 | + * The partial accumulations is structured such that memory accesses in each  | 
 | 71 | + * loop iteration can be coalesced.  | 
 | 72 | + *  | 
 | 73 | + * Then, at the end first thread in each group will accumulate the partial  | 
 | 74 | + * accumulations computed by each thread to obtain the final result.  | 
 | 75 | + *  | 
 | 76 | + * Note that this shader assumes that all tensors are width packed.  | 
 | 77 | + */  | 
 | 78 | +void main() {  | 
 | 79 | +  const uint out_row = gl_GlobalInvocationID.y * TILE_ROWS;  | 
 | 80 | +  // Each thread writes out 2 texels along the width axis, equivalent to 8  | 
 | 81 | +  // scalar elements. Therefore multiply the thread_idx.x by 8.  | 
 | 82 | +  const uint out_col = gl_GlobalInvocationID.x << 3;  | 
 | 83 | +  // Similar reasoning to the above, each thread works on 2 texels along the  | 
 | 84 | +  // width axis so multiply thread_idx.x by 2.  | 
 | 85 | +  const int out_col_texel_idx = int(gl_GlobalInvocationID.x) << 1;  | 
 | 86 | + | 
 | 87 | +  const uint gid = gl_LocalInvocationID.x; // group id  | 
 | 88 | +  const uint wid = gl_LocalInvocationID.z; // worker id  | 
 | 89 | + | 
 | 90 | +  if (out_col >= out_sizes.x || out_row >= out_sizes.y) {  | 
 | 91 | +    return;  | 
 | 92 | +  }  | 
 | 93 | + | 
 | 94 | +  const int num_blocks = mat1_sizes.x / group_size;  | 
 | 95 | + | 
 | 96 | +  VEC4_T mat1[TILE_ROWS];  | 
 | 97 | +  VEC4_T qmat2[4][2];  | 
 | 98 | +  VEC4_T local_sums[TILE_ROWS][2];  | 
 | 99 | + | 
 | 100 | +  [[unroll]] for (int r = 0; r < TILE_ROWS; ++r) {  | 
 | 101 | +    local_sums[r][0] = VEC4_T(0);  | 
 | 102 | +    local_sums[r][1] = VEC4_T(0);  | 
 | 103 | +  }  | 
 | 104 | + | 
 | 105 | +  VEC4_T scales[2];  | 
 | 106 | +  VEC4_T zeros[2];  | 
 | 107 | + | 
 | 108 | +  $if WEIGHT_STORAGE == "buffer":  | 
 | 109 | +    const int qmat2_stride = qmat2_sizes.x >> 2;  | 
 | 110 | +  $if PARAMS_STORAGE == "buffer":  | 
 | 111 | +    const int qparams_y_stride = out_sizes.x >> 2;  | 
 | 112 | +    const int qparams_z_stride = qparams_y_stride * 2;  | 
 | 113 | + | 
 | 114 | +  for (int block_idx = 0; block_idx < num_blocks; ++block_idx) {  | 
 | 115 | +    $if PARAMS_STORAGE == "buffer":  | 
 | 116 | +      scales[0] = t_qparams[block_idx * qparams_z_stride + out_col_texel_idx];  | 
 | 117 | +      zeros[0] = t_qparams[block_idx * qparams_z_stride + out_col_texel_idx + qparams_y_stride];  | 
 | 118 | + | 
 | 119 | +      scales[1] = t_qparams[block_idx * qparams_z_stride + out_col_texel_idx + 1];  | 
 | 120 | +      zeros[1] = t_qparams[block_idx * qparams_z_stride + out_col_texel_idx + 1 + qparams_y_stride];  | 
 | 121 | +    $else:  | 
 | 122 | +      scales[0] = texelFetch(t_qparams, ivec3(out_col_texel_idx, 0, block_idx), 0);  | 
 | 123 | +      zeros[0] = texelFetch(t_qparams, ivec3(out_col_texel_idx, 1, block_idx), 0);  | 
 | 124 | + | 
 | 125 | +      scales[1] = texelFetch(t_qparams, ivec3(out_col_texel_idx + 1, 0, block_idx), 0);  | 
 | 126 | +      zeros[1] = texelFetch(t_qparams, ivec3(out_col_texel_idx + 1, 1, block_idx), 0);  | 
 | 127 | + | 
 | 128 | +    for (uint g_idx = 4 * wid; g_idx < group_size; g_idx += (4 * NWORKERS)) {  | 
 | 129 | +      const uint k = block_idx * group_size + g_idx;  | 
 | 130 | + | 
 | 131 | +      // Preload B  | 
 | 132 | +      [[unroll]] for (int r = 0; r < 4; ++r) {  | 
 | 133 | +        $if WEIGHT_STORAGE == "buffer":  | 
 | 134 | +          const u8vec4 packed_weight_tex = t_qmat2[(k + r) * qmat2_stride + gl_GlobalInvocationID.x];  | 
 | 135 | +        $else:  | 
 | 136 | +          const uvec4 packed_weight_tex = texelFetch(  | 
 | 137 | +              t_qmat2,  | 
 | 138 | +              ivec2(gl_GlobalInvocationID.x, k + r),  | 
 | 139 | +              0);  | 
 | 140 | + | 
 | 141 | +        qmat2[r][0] = (VEC4_T((packed_weight_tex & 0xF0) >> 4) - 8.0) * scales[0] + zeros[0];  | 
 | 142 | +        qmat2[r][1] = (VEC4_T(packed_weight_tex & 0x0F) - 8.0) * scales[1] + zeros[1];  | 
 | 143 | +      }  | 
 | 144 | + | 
 | 145 | +      // Preload A  | 
 | 146 | +      [[unroll]] for (int r = 0; r < TILE_ROWS; ++r) {  | 
 | 147 | +        $if IN_STORAGE == "buffer":  | 
 | 148 | +          mat1[r] = t_mat1[((out_row + r) * mat1_sizes.x + k) >> 2];  | 
 | 149 | +        $else:  | 
 | 150 | +          mat1[r] = texelFetch(t_mat1, ivec3(k >> 2, out_row + r, 0), 0);  | 
 | 151 | +      }  | 
 | 152 | + | 
 | 153 | +      // Accumulate local output tile  | 
 | 154 | +      [[unroll]] for (int r = 0; r < TILE_ROWS; ++r) {  | 
 | 155 | +        local_sums[r][0] +=   mat1[r].x * qmat2[0][0]  | 
 | 156 | +                      + mat1[r].y * qmat2[1][0]  | 
 | 157 | +                      + mat1[r].z * qmat2[2][0]  | 
 | 158 | +                      + mat1[r].w * qmat2[3][0];  | 
 | 159 | + | 
 | 160 | +        local_sums[r][1] +=   mat1[r].x * qmat2[0][1]  | 
 | 161 | +                      + mat1[r].y * qmat2[1][1]  | 
 | 162 | +                      + mat1[r].z * qmat2[2][1]  | 
 | 163 | +                      + mat1[r].w * qmat2[3][1];  | 
 | 164 | +      }  | 
 | 165 | +    }  | 
 | 166 | +  }  | 
 | 167 | + | 
 | 168 | +  [[unroll]] for (int r = 0; r < TILE_ROWS; ++r) {  | 
 | 169 | +    partial_sums[gid][wid][r][0] = local_sums[r][0];  | 
 | 170 | +    partial_sums[gid][wid][r][1] = local_sums[r][1];  | 
 | 171 | +  }  | 
 | 172 | + | 
 | 173 | +  memoryBarrierShared();  | 
 | 174 | +  barrier();  | 
 | 175 | + | 
 | 176 | +  if (wid != 0) {  | 
 | 177 | +    return;  | 
 | 178 | +  }  | 
 | 179 | + | 
 | 180 | +  VEC4_T sums[TILE_ROWS][2];  | 
 | 181 | + | 
 | 182 | +  for (int r = 0; r < TILE_ROWS; ++r) {  | 
 | 183 | +    sums[r][0] = VEC4_T(0);  | 
 | 184 | +    sums[r][1] = VEC4_T(0);  | 
 | 185 | +    [[unroll]] for (int worker = 0; worker < NWORKERS; ++ worker) {  | 
 | 186 | +      sums[r][0] += partial_sums[gid][worker][r][0];  | 
 | 187 | +      sums[r][1] += partial_sums[gid][worker][r][1];  | 
 | 188 | +    }  | 
 | 189 | +  }  | 
 | 190 | + | 
 | 191 | +  [[unroll]] for (int r = 0; r < TILE_ROWS; ++r) {  | 
 | 192 | +    $if OUT_STORAGE == "buffer":  | 
 | 193 | +      t_out[((out_row + r) * out_sizes.x + out_col) >> 2] = sums[r][0];  | 
 | 194 | +      t_out[((out_row + r) * out_sizes.x + out_col + 4) >> 2] = sums[r][1];  | 
 | 195 | +    $else:  | 
 | 196 | +      imageStore(t_out, ivec3(out_col_texel_idx, out_row + r, 0), sums[r][0]);  | 
 | 197 | +      imageStore(t_out, ivec3(out_col_texel_idx + 1, out_row + r, 0), sums[r][1]);  | 
 | 198 | +  }  | 
 | 199 | +}  | 
0 commit comments