@@ -651,10 +651,31 @@ def _prepare_for_llama_export(args) -> LLMEdgeManager:
651651 logging .info (f"Checkpoint dtype: { edge_manager .model .checkpoint_dtype } " )
652652 edge_manager = edge_manager .set_output_dir (output_dir_path ).source_transform (
653653 _get_source_transforms (
654- modelname = args .model ,
655654 dtype_override = dtype_override ,
655+ checkpoint = args .checkpoint ,
656656 checkpoint_dtype = DType .from_torch_dtype (checkpoint_dtype ), # type: ignore
657- args = args ,
657+ tokenizer_path = args .tokenizer_path ,
658+ use_spin_quant = args .use_spin_quant ,
659+ embedding_quantize = args .embedding_quantize ,
660+ quantization_mode = args .quantization_mode ,
661+ expand_rope_table = args .expand_rope_table ,
662+ use_custom_sdpa_with_attention_mask = getattr (args , "use_custom_sdpa_with_attention_mask" , False ),
663+ use_sdpa_with_kv_cache = args .use_sdpa_with_kv_cache ,
664+ quantize_kv_cache = args .quantize_kv_cache ,
665+ use_kv_cache = args .use_kv_cache ,
666+ qnn = args .qnn ,
667+ use_qnn_sha = args .use_qnn_sha ,
668+ optimized_rotation_path = args .optimized_rotation_path ,
669+ mps = args .mps ,
670+ coreml = args .coreml ,
671+ coreml_ios = args .coreml_ios ,
672+ vulkan = args .vulkan ,
673+ use_shared_embedding = args .use_shared_embedding ,
674+ use_qat = args .use_qat ,
675+ use_lora = args .use_lora ,
676+ preq_mode = args .preq_mode ,
677+ preq_group_size = args .preq_group_size ,
678+ preq_embedding_quantize = args .preq_embedding_quantize ,
658679 )
659680 )
660681
@@ -1145,23 +1166,65 @@ def _load_llama_model(
11451166
11461167
11471168def _get_source_transforms ( # noqa
1148- modelname : str ,
11491169 dtype_override : DType ,
11501170 * ,
1171+ checkpoint : Optional [str ] = None ,
11511172 checkpoint_dtype : Optional [DType ] = None ,
1152- args ,
1173+ tokenizer_path : Optional [str ] = None ,
1174+ use_spin_quant : Optional [str ] = None ,
1175+ embedding_quantize : Optional [str ] = None ,
1176+ quantization_mode : Optional [str ] = None ,
1177+ expand_rope_table : bool = False ,
1178+ use_custom_sdpa_with_attention_mask : bool = False ,
1179+ use_sdpa_with_kv_cache : bool = False ,
1180+ quantize_kv_cache : bool = False ,
1181+ use_kv_cache : bool = False ,
1182+ qnn : bool = False ,
1183+ use_qnn_sha : bool = False ,
1184+ optimized_rotation_path : Optional [str ] = None ,
1185+ mps : bool = False ,
1186+ coreml : bool = False ,
1187+ coreml_ios : int = 15 ,
1188+ vulkan : bool = False ,
1189+ use_shared_embedding : bool = False ,
1190+ use_qat : bool = False ,
1191+ use_lora : int = 0 ,
1192+ preq_mode : Optional [str ] = None ,
1193+ preq_group_size : int = 32 ,
1194+ preq_embedding_quantize : str = "8,0" ,
11531195) -> List [Callable [[torch .nn .Module ], torch .nn .Module ]]:
11541196 """
11551197 Return a list of functions that transform a graph.
11561198
11571199 Args:
1158- modelname: The name of the model.
11591200 dtype_override: The dtype to use for the model.
1201+ checkpoint: Path to the checkpoint file.
11601202 checkpoint_dtype: The dtype of the checkpoint. At the moment, if this is specified,
11611203 it means that you want to run quantize transformations on the weights represented
11621204 in their original dtype, while the overall dtype of the model maybe something
11631205 different. If not specified, defaults to dtype_override.
1164- args: The arguments passed to the script.
1206+ tokenizer_path: Path to the tokenizer file.
1207+ use_spin_quant: Type of spin quant to use ("cuda" or "native").
1208+ embedding_quantize: Type of embedding quantization.
1209+ quantization_mode: Type of quantization mode.
1210+ expand_rope_table: Whether to expand rope table.
1211+ use_custom_sdpa_with_attention_mask: Whether to use custom SDPA with attention mask.
1212+ use_sdpa_with_kv_cache: Whether to use SDPA with KV cache.
1213+ quantize_kv_cache: Whether to quantize KV cache.
1214+ use_kv_cache: Whether to use KV cache.
1215+ qnn: Whether to use QNN.
1216+ use_qnn_sha: Whether to use QNN SHA.
1217+ optimized_rotation_path: Path to optimized rotation.
1218+ mps: Whether to use MPS.
1219+ coreml: Whether to use CoreML.
1220+ coreml_ios: CoreML iOS version.
1221+ vulkan: Whether to use Vulkan.
1222+ use_shared_embedding: Whether to use shared embedding.
1223+ use_qat: Whether to use QAT.
1224+ use_lora: LoRA rank (0 means no LoRA).
1225+ preq_mode: Pre-quantization mode.
1226+ preq_group_size: Pre-quantization group size.
1227+ preq_embedding_quantize: Pre-quantization embedding quantize.
11651228
11661229 Returns:
11671230 A list of transformation functions.
@@ -1172,21 +1235,21 @@ def _get_source_transforms( # noqa
11721235
11731236 transforms = []
11741237
1175- if args . use_spin_quant :
1176- if args . use_spin_quant == "cuda" :
1238+ if use_spin_quant :
1239+ if use_spin_quant == "cuda" :
11771240 from .source_transformation .spin_quant import (
11781241 inject_fast_hadamard_transform_cuda_for_spin_quant ,
11791242 )
11801243
11811244 transforms .append (inject_fast_hadamard_transform_cuda_for_spin_quant )
1182- elif args . use_spin_quant == "native" :
1245+ elif use_spin_quant == "native" :
11831246 from .source_transformation .spin_quant import (
11841247 inject_fast_hadamard_transform_native_for_spin_quant ,
11851248 )
11861249
11871250 transforms .append (inject_fast_hadamard_transform_native_for_spin_quant )
11881251
1189- if args . embedding_quantize :
1252+ if embedding_quantize :
11901253 """
11911254 When this option is selected, it finds all embedding layers and transforms
11921255 into quantized embedding equivalent module.
@@ -1196,12 +1259,25 @@ def _get_source_transforms( # noqa
11961259 transformations based on the given checkpoint first. In those cases,
11971260 this wil be a no-op.
11981261 """
1199- modelname = f"{ modelname } _e"
1262+ # Create a mock args object with the necessary attributes
1263+ class Args :
1264+ pass
1265+ args = Args ()
1266+ args .checkpoint = checkpoint
1267+ args .tokenizer_path = tokenizer_path
1268+ args .embedding_quantize = embedding_quantize
1269+ args .use_shared_embedding = use_shared_embedding
1270+ args .use_qat = use_qat
1271+ args .use_lora = use_lora
1272+ args .preq_mode = preq_mode
1273+ args .preq_group_size = preq_group_size
1274+ args .preq_embedding_quantize = preq_embedding_quantize
1275+
12001276 transforms .append (get_quant_embedding_transform (args , checkpoint_dtype ))
12011277
12021278 # quantization_mode should be applied after embedding_quantize
12031279 # to support shared_embedding
1204- if args . quantization_mode :
1280+ if quantization_mode :
12051281 """
12061282 When this option is selected, it finds all linear layers and transforms
12071283 into quantized linear equivalent module.
@@ -1215,7 +1291,19 @@ def _get_source_transforms( # noqa
12151291 There are cases where this may be a no-op, namely, if all linears are
12161292 quantized in the checkpoint.
12171293 """
1218- modelname = f"{ modelname } _q"
1294+ # Create a mock args object with the necessary attributes
1295+ class Args :
1296+ pass
1297+ args = Args ()
1298+ args .checkpoint = checkpoint
1299+ args .tokenizer_path = tokenizer_path
1300+ args .quantization_mode = quantization_mode
1301+ args .group_size = preq_group_size # Using preq_group_size as group_size
1302+ args .use_shared_embedding = use_shared_embedding
1303+ args .use_qat = use_qat
1304+ args .use_lora = use_lora
1305+ args .preq_mode = preq_mode
1306+
12191307 transforms .append (
12201308 get_quant_weight_transform (
12211309 args = args ,
@@ -1224,15 +1312,12 @@ def _get_source_transforms( # noqa
12241312 )
12251313 )
12261314
1227- if args . expand_rope_table :
1315+ if expand_rope_table :
12281316 transforms .append (materialze_broadcast_of_rope_freq_cis )
12291317
1230- use_attention_mask_for_custom_sdpa = False
1231- if isinstance (args , argparse .Namespace ):
1232- if getattr (args , "use_custom_sdpa_with_attention_mask" , None ):
1233- use_attention_mask_for_custom_sdpa = True
1318+ use_attention_mask_for_custom_sdpa = use_custom_sdpa_with_attention_mask
12341319
1235- if args . use_sdpa_with_kv_cache :
1320+ if use_sdpa_with_kv_cache :
12361321 transforms .append (replace_kv_cache_with_custom_kv_cache )
12371322 # todo: do this optionally
12381323 # if use attention mask instead of causal attention
@@ -1244,23 +1329,23 @@ def _get_source_transforms( # noqa
12441329 else :
12451330 transforms .append (replace_sdpa_with_custom_op )
12461331
1247- if args . quantize_kv_cache :
1248- assert args . use_kv_cache , "quantize_kv_cache requires use_kv_cache=True"
1332+ if quantize_kv_cache :
1333+ assert use_kv_cache , "quantize_kv_cache requires use_kv_cache=True"
12491334 transforms .append (replace_kv_cache_with_quantized_kv_cache )
12501335 # Right now
12511336 transforms .append (replace_sdpa_with_quantized_sdpa )
12521337
1253- if args . use_kv_cache :
1254- if args . qnn :
1338+ if use_kv_cache :
1339+ if qnn :
12551340 from executorch .backends .qualcomm .utils .utils import (
12561341 convert_linear_to_conv2d ,
12571342 )
12581343
1259- if args . use_qnn_sha :
1260- if args . optimized_rotation_path :
1344+ if use_qnn_sha :
1345+ if optimized_rotation_path :
12611346 transforms .append (fuse_layer_norms )
12621347 transforms .append (
1263- get_model_with_r1_r2 (args . optimized_rotation_path )
1348+ get_model_with_r1_r2 (optimized_rotation_path )
12641349 )
12651350 transforms .append (replace_attention_to_attention_sha )
12661351 transforms .append (replace_causal_mask )
@@ -1272,29 +1357,29 @@ def _get_source_transforms( # noqa
12721357 transforms .append (replace_sdpa_with_flex_sdpa )
12731358 transforms .append (replace_causal_mask )
12741359 transforms .append (replace_rms_norm_with_native_rms_norm )
1275- if args . optimized_rotation_path :
1360+ if optimized_rotation_path :
12761361 transforms .append (fuse_layer_norms )
12771362 transforms .append (
1278- get_model_with_r1_r2 (args . optimized_rotation_path )
1363+ get_model_with_r1_r2 (optimized_rotation_path )
12791364 )
12801365 # pyre-fixme[16]: Module `backends` has no attribute `qualcomm`.
12811366 transforms .append (convert_linear_to_conv2d )
12821367
1283- elif args . mps :
1368+ elif mps :
12841369 # Currently mps doesn't support sdpa op, use the simpler decomposition
12851370 # to get free perf gain.
12861371 transforms .append (replace_sdpa_with_simple_sdpa )
12871372 transforms .append (replace_causal_mask )
12881373
1289- elif args . coreml :
1374+ elif coreml :
12901375 # iOS 18 introduced fused sdpa op
1291- if args . coreml_ios >= 18 :
1376+ if coreml_ios >= 18 :
12921377 transforms .append (replace_sdpa_with_coreml_sdpa )
12931378 else :
12941379 transforms .append (replace_sdpa_with_simple_sdpa )
12951380 transforms .append (replace_kv_cache_with_coreml_kv_cache )
12961381
1297- if args . vulkan :
1382+ if vulkan :
12981383 transforms .append (replace_with_vulkan_rotary_emb )
12991384
13001385 return transforms
0 commit comments