|
| 1 | +#!/usr/bin/env python3 |
| 2 | +""" |
| 3 | +Test to verify the fix for temp memory allocation issue in torch.topk operations. |
| 4 | +
|
| 5 | +This test specifically checks that the MallocMemoryAllocator fix in pybindings.cpp |
| 6 | +resolves the "Memory allocation failed" error when executing operations that |
| 7 | +require temporary memory allocation. |
| 8 | +""" |
| 9 | + |
| 10 | +import os |
| 11 | +import tempfile |
| 12 | +from pathlib import Path |
| 13 | + |
| 14 | +import torch |
| 15 | +from executorch.backends.xnnpack.partition.xnnpack_partitioner import XnnpackPartitioner |
| 16 | +from executorch.exir import EdgeCompileConfig, to_edge_transform_and_lower |
| 17 | +from executorch.runtime import Runtime, Verification |
| 18 | +from torch.export import export |
| 19 | + |
| 20 | + |
| 21 | +class TopKModel(torch.nn.Module): |
| 22 | + """Model that uses torch.topk operation which requires temp memory allocation.""" |
| 23 | + |
| 24 | + def __init__(self, k=3) -> None: |
| 25 | + super().__init__() |
| 26 | + self.k = k |
| 27 | + |
| 28 | + def forward(self, x) -> "tuple[torch.Tensor, torch.Tensor]": |
| 29 | + # This operation requires temporary memory allocation |
| 30 | + top_values, top_indices = torch.topk(x, self.k) |
| 31 | + return top_values, top_indices |
| 32 | + |
| 33 | + |
| 34 | +class TopKModelWithOut(torch.nn.Module): |
| 35 | + """Model that uses torch.topk with out parameter which also requires temp memory.""" |
| 36 | + |
| 37 | + def __init__(self, k=3) -> None: |
| 38 | + super().__init__() |
| 39 | + self.k = k |
| 40 | + |
| 41 | + def forward(self, x) -> "tuple[torch.Tensor, torch.Tensor]": |
| 42 | + top_values = torch.ones(x.shape[0], self.k, dtype=torch.float32) |
| 43 | + top_indices = torch.ones(x.shape[0], self.k, dtype=torch.long) |
| 44 | + torch.topk(x.contiguous(), self.k, out=(top_values, top_indices)) |
| 45 | + return top_values, top_indices |
| 46 | + |
| 47 | + |
| 48 | +def test_topk_without_out_parameter(): |
| 49 | + """Test torch.topk without out parameter.""" |
| 50 | + print("Testing torch.topk without out parameter...") |
| 51 | + |
| 52 | + model = TopKModel(k=5) |
| 53 | + example_input = (torch.randn(3, 100),) |
| 54 | + |
| 55 | + # Export and compile the model |
| 56 | + with torch.no_grad(): |
| 57 | + aten_dialect = export(model, example_input) |
| 58 | + |
| 59 | + backend_dialect = to_edge_transform_and_lower( |
| 60 | + aten_dialect, |
| 61 | + compile_config=EdgeCompileConfig(_check_ir_validity=False), |
| 62 | + partitioner=[XnnpackPartitioner()], |
| 63 | + ) |
| 64 | + |
| 65 | + executorch_dialect = backend_dialect.to_executorch() |
| 66 | + |
| 67 | + # Save to temporary file |
| 68 | + with tempfile.NamedTemporaryFile(suffix=".pte", delete=False) as f: |
| 69 | + temp_path = f.name |
| 70 | + |
| 71 | + try: |
| 72 | + executorch_dialect.save(temp_path) |
| 73 | + |
| 74 | + # Load and execute with ExecuTorch runtime |
| 75 | + et_runtime = Runtime.get() |
| 76 | + program = et_runtime.load_program( |
| 77 | + Path(temp_path), |
| 78 | + verification=Verification.Minimal, |
| 79 | + ) |
| 80 | + |
| 81 | + forward = program.load_method("forward") |
| 82 | + outputs = forward.execute(example_input) |
| 83 | + |
| 84 | + print( |
| 85 | + f"✓ Successfully executed topk model: {example_input[0].shape} -> {outputs[0].shape}" |
| 86 | + ) |
| 87 | + return True |
| 88 | + |
| 89 | + finally: |
| 90 | + # Clean up temporary file |
| 91 | + if os.path.exists(temp_path): |
| 92 | + os.unlink(temp_path) |
| 93 | + |
| 94 | + |
| 95 | +def test_topk_with_out_parameter(): |
| 96 | + """Test torch.topk with out parameter (original failing case).""" |
| 97 | + print("Testing torch.topk with out parameter...") |
| 98 | + |
| 99 | + model = TopKModelWithOut(k=3) |
| 100 | + example_input = (torch.randn(2, 256),) |
| 101 | + |
| 102 | + # Export and compile the model |
| 103 | + with torch.no_grad(): |
| 104 | + aten_dialect = export(model, example_input) |
| 105 | + |
| 106 | + backend_dialect = to_edge_transform_and_lower( |
| 107 | + aten_dialect, |
| 108 | + compile_config=EdgeCompileConfig(_check_ir_validity=False), |
| 109 | + partitioner=[XnnpackPartitioner()], |
| 110 | + ) |
| 111 | + |
| 112 | + executorch_dialect = backend_dialect.to_executorch() |
| 113 | + |
| 114 | + # Save to temporary file |
| 115 | + with tempfile.NamedTemporaryFile(suffix=".pte", delete=False) as f: |
| 116 | + temp_path = f.name |
| 117 | + |
| 118 | + try: |
| 119 | + executorch_dialect.save(temp_path) |
| 120 | + |
| 121 | + # Load and execute with ExecuTorch runtime |
| 122 | + et_runtime = Runtime.get() |
| 123 | + program = et_runtime.load_program( |
| 124 | + Path(temp_path), |
| 125 | + verification=Verification.Minimal, |
| 126 | + ) |
| 127 | + |
| 128 | + forward = program.load_method("forward") |
| 129 | + outputs = forward.execute(example_input) |
| 130 | + |
| 131 | + print( |
| 132 | + f"✓ Successfully executed topk model with out parameter: {example_input[0].shape} -> {outputs[0].shape}" |
| 133 | + ) |
| 134 | + return True |
| 135 | + |
| 136 | + finally: |
| 137 | + # Clean up temporary file |
| 138 | + if os.path.exists(temp_path): |
| 139 | + os.unlink(temp_path) |
| 140 | + |
| 141 | + |
| 142 | +def test_larger_topk_operation(): |
| 143 | + """Test larger topk operation that would require more temporary memory.""" |
| 144 | + print("Testing larger topk operation...") |
| 145 | + |
| 146 | + model = TopKModel(k=50) |
| 147 | + example_input = (torch.randn(5, 1000),) |
| 148 | + |
| 149 | + # Export and compile the model |
| 150 | + with torch.no_grad(): |
| 151 | + aten_dialect = export(model, example_input) |
| 152 | + |
| 153 | + backend_dialect = to_edge_transform_and_lower( |
| 154 | + aten_dialect, |
| 155 | + compile_config=EdgeCompileConfig(_check_ir_validity=False), |
| 156 | + partitioner=[XnnpackPartitioner()], |
| 157 | + ) |
| 158 | + |
| 159 | + executorch_dialect = backend_dialect.to_executorch() |
| 160 | + |
| 161 | + # Save to temporary file |
| 162 | + with tempfile.NamedTemporaryFile(suffix=".pte", delete=False) as f: |
| 163 | + temp_path = f.name |
| 164 | + |
| 165 | + try: |
| 166 | + executorch_dialect.save(temp_path) |
| 167 | + |
| 168 | + # Load and execute with ExecuTorch runtime |
| 169 | + et_runtime = Runtime.get() |
| 170 | + program = et_runtime.load_program( |
| 171 | + Path(temp_path), |
| 172 | + verification=Verification.Minimal, |
| 173 | + ) |
| 174 | + |
| 175 | + forward = program.load_method("forward") |
| 176 | + outputs = forward.execute(example_input) |
| 177 | + |
| 178 | + print( |
| 179 | + f"✓ Successfully executed large topk model: {example_input[0].shape} -> {outputs[0].shape}" |
| 180 | + ) |
| 181 | + return True |
| 182 | + |
| 183 | + finally: |
| 184 | + # Clean up temporary file |
| 185 | + if os.path.exists(temp_path): |
| 186 | + os.unlink(temp_path) |
| 187 | + |
| 188 | + |
| 189 | +def main(): |
| 190 | + """Run all tests to verify the temp memory allocation fix.""" |
| 191 | + print("Testing temp memory allocation fix for torch.topk operations") |
| 192 | + print("=" * 60) |
| 193 | + |
| 194 | + tests = [ |
| 195 | + test_topk_without_out_parameter, |
| 196 | + test_topk_with_out_parameter, |
| 197 | + test_larger_topk_operation, |
| 198 | + ] |
| 199 | + |
| 200 | + passed = 0 |
| 201 | + failed = 0 |
| 202 | + |
| 203 | + for test in tests: |
| 204 | + try: |
| 205 | + if test(): |
| 206 | + passed += 1 |
| 207 | + else: |
| 208 | + failed += 1 |
| 209 | + except Exception as e: |
| 210 | + print(f"✗ Test {test.__name__} failed with exception: {e}") |
| 211 | + failed += 1 |
| 212 | + |
| 213 | + print("\n" + "=" * 60) |
| 214 | + print(f"Test Results: {passed} passed, {failed} failed") |
| 215 | + |
| 216 | + if failed == 0: |
| 217 | + print( |
| 218 | + "✓ All tests passed! The temp memory allocation fix is working correctly." |
| 219 | + ) |
| 220 | + return True |
| 221 | + else: |
| 222 | + print("✗ Some tests failed. The fix may not be working correctly.") |
| 223 | + return False |
| 224 | + |
| 225 | + |
| 226 | +if __name__ == "__main__": |
| 227 | + success = main() |
| 228 | + exit(0 if success else 1) |
0 commit comments