@@ -56,9 +56,9 @@ const lowp ivec4 bias_axis_map = unhash_axis_map(bias_layout);
5656// weight = (out_C, in_C / G, K),
5757// bias = (out_C,).
5858//
59- // This implementation performs out_C shader invocations, where each invocation
59+ // This implementation performs N x out_C x out_L shader invocations, where each invocation
6060// calculates the rolling kernel of the length dimension for each batch, i.e.,
61- // computes out_L * N results.
61+ // computes out_L results.
6262//
6363// Note that we can rewrite this implementation as out_L * out_C * ceil(N / 4)
6464// shader invocations, where each invocation computes 1 result. But that
@@ -70,61 +70,53 @@ void main() {
7070 return ;
7171 }
7272
73- int in_length = in_sizes.x;
74- int batch_size = in_sizes.z;
75-
7673 // "out_c" is the output's channel index where we write our result.
7774 // Across shader invocations, this is the only value that varies.
78- int out_c = lpos.y;
79- VEC4_T bias = load_texel_lpos(bias_in, ivec3 (out_c, 0 , 0 ), bias_axis_map);
75+ const int out_c = lpos.y;
8076
8177 // "in_c" tracks the input's channel start index.
8278 // We iterate over the input group that corresponds to the output group.
83- int c_start = (out_c / out_group_size) * in_group_size;
84- int c_end = c_start + in_group_size;
79+ const int c_start = (out_c / out_group_size) * in_group_size;
80+ const int c_end = c_start + in_group_size;
81+
82+ // "out_l" tracks the output's length index where we write our result.
83+ const int out_l = lpos.x;
84+
85+ // "N" is the batch index
86+ const int N = lpos.z;
8587
8688 // "in_l" tracks the input's length start index for our input-kernel overlay
8789 // region.
88- int l_start = - padding;
89- int l_end = in_length + padding - dilation * (kernel_size - 1 );
90-
91- // Since the input/output tensors are channel-packed, which is along the
92- // batch dimension, we can batch-read/write four elements at a time.
93- for (int n = 0 ; n < batch_size; n += 4 ) {
94- // "out_l" tracks the output's length index where we write our result.
95- int out_l = 0 ;
96-
97- for (int in_l = l_start; in_l < l_end; in_l += stride, ++ out_l) {
98- VEC4_T sum = VEC4_T(0 );
99-
100- for (int in_c = c_start; in_c < c_end; ++ in_c) {
101- // "k" tracks the kernel's index for our input-kernel computation.
102- // It reads out-of-bound zeros, but trying to avoid them complicates
103- // for-loop conditions, which results in worse performance.
104-
105- // The weight tensor is channel-packed. It may not be trival choice for
106- // performance reason since need to have more data fetch. The reason is
107- // for some sequence model, we found that the weight tensor
108- // (out_channel, in_channel / group, kernel) often has a large
109- // out_channel >> kernel, leading to non-optimal use of memory as the
110- // weight tensor gets very deep. As a mitigation, we use channel-packing
111- // for the weight tensor, yielding a 75% reduction in weight-tensor
112- // memory.
113-
114- // It is possible to further reduce the memory footprint by swapping the
115- // dimensions, using x extent for out_channel, and y for kernel.
116- for (int k = 0 ; k < kernel_size; k += 1 ) {
117- const ivec3 w_lpos = ivec3 (k, in_c % in_group_size, out_c / 4 );
118- const VEC4_T weight_texel = load_texel_lpos(kernel_in, w_lpos, kernel_axis_map);
119- VEC4_T weight = VEC4_T(weight_texel[out_c % 4 ]);
120-
121- ivec3 in_pos = lpos_to_pos(ivec3 (in_l + k * dilation, in_c, n / 4 ), in_axis_map);
122- sum = fma(weight, load_texel(t_in, in_pos), sum);
123- }
124- }
125-
126- const ivec3 out_lpos = ivec3 (out_l, out_c, n / 4 );
127- write_texel_lpos(t_out, out_lpos, op(sum + bias.x, out_min, out_max), out_axis_map);
90+ const int in_l = out_l * stride - padding;
91+ VEC4_T sum = VEC4_T(0 );
92+
93+ for (int in_c = c_start; in_c < c_end; ++ in_c) {
94+ // "k" tracks the kernel's index for our input-kernel computation.
95+ // It reads out-of-bound zeros, but trying to avoid them complicates
96+ // for-loop conditions, which results in worse performance.
97+
98+ // The weight tensor is channel-packed. It may not be trival choice for
99+ // performance reason since need to have more data fetch. The reason is
100+ // for some sequence model, we found that the weight tensor
101+ // (out_channel, in_channel / group, kernel) often has a large
102+ // out_channel >> kernel, leading to non-optimal use of memory as the
103+ // weight tensor gets very deep. As a mitigation, we use channel-packing
104+ // for the weight tensor, yielding a 75% reduction in weight-tensor
105+ // memory.
106+
107+ // It is possible to further reduce the memory footprint by swapping the
108+ // dimensions, using x extent for out_channel, and y for kernel.
109+ for (int k = 0 ; k < kernel_size; k++ ) {
110+ const ivec3 w_lpos = ivec3 (k, in_c % in_group_size, out_c / 4 );
111+ const VEC4_T weight_texel = load_texel_lpos(kernel_in, w_lpos, kernel_axis_map);
112+ VEC4_T weight = VEC4_T(weight_texel[out_c % 4 ]);
113+
114+ const ivec3 in_pos = lpos_to_pos(ivec3 (in_l + k * dilation, in_c, N), in_axis_map);
115+ sum = fma(weight, load_texel(t_in, in_pos), sum);
128116 }
129117 }
118+
119+ const VEC4_T bias = load_texel_lpos(bias_in, ivec3 (out_c, 0 , 0 ), bias_axis_map);
120+ const ivec3 out_lpos = ivec3 (out_l, out_c, N);
121+ write_texel_lpos(t_out, out_lpos, op(sum + bias.x, out_min, out_max), out_axis_map);
130122}
0 commit comments