|
| 1 | +# (c) Meta Platforms, Inc. and affiliates. Confidential and proprietary. |
| 2 | + |
| 3 | +# pyre-strict |
| 4 | + |
| 5 | +from typing import Callable, List, Optional, Tuple, Union |
| 6 | + |
| 7 | +import torch |
| 8 | + |
| 9 | +from executorch.backends.test.compliance_suite import ( |
| 10 | + dtype_test, |
| 11 | + operator_test, |
| 12 | + OperatorTest, |
| 13 | +) |
| 14 | + |
| 15 | +class AmaxModel(torch.nn.Module): |
| 16 | + def __init__( |
| 17 | + self, |
| 18 | + dim: Optional[Union[int, Tuple[int, ...], List[int]]] = None, |
| 19 | + keepdim: bool = False |
| 20 | + ): |
| 21 | + super().__init__() |
| 22 | + self.dim = dim |
| 23 | + self.keepdim = keepdim |
| 24 | + |
| 25 | + def forward(self, x): |
| 26 | + return torch.amax(x, dim=self.dim, keepdim=self.keepdim) |
| 27 | + |
| 28 | +@operator_test |
| 29 | +class TestAmax(OperatorTest): |
| 30 | + @dtype_test |
| 31 | + def test_amax_dtype(self, dtype, tester_factory: Callable) -> None: |
| 32 | + # Test with different dtypes |
| 33 | + model = AmaxModel().to(dtype) |
| 34 | + self._test_op(model, (torch.rand(10, 10).to(dtype),), tester_factory) |
| 35 | + |
| 36 | + def test_amax_basic(self, tester_factory: Callable) -> None: |
| 37 | + # Basic test with default parameters (global reduction) |
| 38 | + self._test_op(AmaxModel(), (torch.randn(10, 10),), tester_factory) |
| 39 | + |
| 40 | + def test_amax_dim(self, tester_factory: Callable) -> None: |
| 41 | + # Test with different dimensions |
| 42 | + |
| 43 | + # 2D tensor, dim=0 |
| 44 | + self._test_op(AmaxModel(dim=0), (torch.randn(5, 10),), tester_factory) |
| 45 | + |
| 46 | + # 2D tensor, dim=1 |
| 47 | + self._test_op(AmaxModel(dim=1), (torch.randn(5, 10),), tester_factory) |
| 48 | + |
| 49 | + # 3D tensor, dim=0 |
| 50 | + self._test_op(AmaxModel(dim=0), (torch.randn(3, 4, 5),), tester_factory) |
| 51 | + |
| 52 | + # 3D tensor, dim=1 |
| 53 | + self._test_op(AmaxModel(dim=1), (torch.randn(3, 4, 5),), tester_factory) |
| 54 | + |
| 55 | + # 3D tensor, dim=2 |
| 56 | + self._test_op(AmaxModel(dim=2), (torch.randn(3, 4, 5),), tester_factory) |
| 57 | + |
| 58 | + # 4D tensor, dim=1 |
| 59 | + self._test_op(AmaxModel(dim=1), (torch.randn(2, 3, 4, 5),), tester_factory) |
| 60 | + |
| 61 | + # Negative dim (last dimension) |
| 62 | + self._test_op(AmaxModel(dim=-1), (torch.randn(3, 4, 5),), tester_factory) |
| 63 | + |
| 64 | + # Negative dim (second-to-last dimension) |
| 65 | + self._test_op(AmaxModel(dim=-2), (torch.randn(3, 4, 5),), tester_factory) |
| 66 | + |
| 67 | + def test_amax_multi_dim(self, tester_factory: Callable) -> None: |
| 68 | + # Test with multiple dimensions |
| 69 | + |
| 70 | + # 3D tensor, dim=(0, 1) |
| 71 | + self._test_op(AmaxModel(dim=(0, 1)), (torch.randn(3, 4, 5),), tester_factory) |
| 72 | + |
| 73 | + # 3D tensor, dim=(0, 2) |
| 74 | + self._test_op(AmaxModel(dim=(0, 2)), (torch.randn(3, 4, 5),), tester_factory) |
| 75 | + |
| 76 | + # 3D tensor, dim=(1, 2) |
| 77 | + self._test_op(AmaxModel(dim=(1, 2)), (torch.randn(3, 4, 5),), tester_factory) |
| 78 | + |
| 79 | + # 4D tensor, dim=(1, 3) |
| 80 | + self._test_op(AmaxModel(dim=(1, 3)), (torch.randn(2, 3, 4, 5),), tester_factory) |
| 81 | + |
| 82 | + # 4D tensor, dim=(0, 2) |
| 83 | + self._test_op(AmaxModel(dim=(0, 2)), (torch.randn(2, 3, 4, 5),), tester_factory) |
| 84 | + |
| 85 | + # 4D tensor, dim=(-1, -3) |
| 86 | + self._test_op(AmaxModel(dim=(-1, -3)), (torch.randn(2, 3, 4, 5),), tester_factory) |
| 87 | + |
| 88 | + # 4D tensor, all dimensions |
| 89 | + self._test_op(AmaxModel(dim=(0, 1, 2, 3)), (torch.randn(2, 3, 4, 5),), tester_factory) |
| 90 | + |
| 91 | + def test_amax_keepdim(self, tester_factory: Callable) -> None: |
| 92 | + # Test with keepdim=True |
| 93 | + |
| 94 | + # 2D tensor, dim=0, keepdim=True |
| 95 | + self._test_op(AmaxModel(dim=0, keepdim=True), (torch.randn(5, 10),), tester_factory) |
| 96 | + |
| 97 | + # 2D tensor, dim=1, keepdim=True |
| 98 | + self._test_op(AmaxModel(dim=1, keepdim=True), (torch.randn(5, 10),), tester_factory) |
| 99 | + |
| 100 | + # 3D tensor, dim=1, keepdim=True |
| 101 | + self._test_op(AmaxModel(dim=1, keepdim=True), (torch.randn(3, 4, 5),), tester_factory) |
| 102 | + |
| 103 | + # 4D tensor, dim=2, keepdim=True |
| 104 | + self._test_op(AmaxModel(dim=2, keepdim=True), (torch.randn(2, 3, 4, 5),), tester_factory) |
| 105 | + |
| 106 | + # Multiple dimensions with keepdim=True |
| 107 | + self._test_op(AmaxModel(dim=(1, 2), keepdim=True), (torch.randn(3, 4, 5),), tester_factory) |
| 108 | + |
| 109 | + def test_amax_shapes(self, tester_factory: Callable) -> None: |
| 110 | + # Test with different tensor shapes |
| 111 | + |
| 112 | + # 1D tensor |
| 113 | + self._test_op(AmaxModel(), (torch.randn(20),), tester_factory) |
| 114 | + self._test_op(AmaxModel(dim=0), (torch.randn(20),), tester_factory) |
| 115 | + |
| 116 | + # 2D tensor |
| 117 | + self._test_op(AmaxModel(), (torch.randn(5, 10),), tester_factory) |
| 118 | + |
| 119 | + # 3D tensor |
| 120 | + self._test_op(AmaxModel(), (torch.randn(3, 4, 5),), tester_factory) |
| 121 | + |
| 122 | + # 4D tensor |
| 123 | + self._test_op(AmaxModel(), (torch.randn(2, 3, 4, 5),), tester_factory) |
| 124 | + |
| 125 | + # 5D tensor |
| 126 | + self._test_op(AmaxModel(), (torch.randn(2, 2, 3, 4, 5),), tester_factory) |
| 127 | + |
| 128 | + def test_amax_values(self, tester_factory: Callable) -> None: |
| 129 | + # Test with different value patterns |
| 130 | + |
| 131 | + # Tensor with clear maximum |
| 132 | + x = torch.tensor([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]]) |
| 133 | + self._test_op(AmaxModel(), (x,), tester_factory) |
| 134 | + self._test_op(AmaxModel(dim=0), (x,), tester_factory) |
| 135 | + self._test_op(AmaxModel(dim=1), (x,), tester_factory) |
| 136 | + |
| 137 | + # Tensor with duplicate maximum values |
| 138 | + x = torch.tensor([[3.0, 2.0, 3.0], [6.0, 6.0, 5.0]]) |
| 139 | + self._test_op(AmaxModel(), (x,), tester_factory) |
| 140 | + self._test_op(AmaxModel(dim=0), (x,), tester_factory) |
| 141 | + self._test_op(AmaxModel(dim=1), (x,), tester_factory) |
| 142 | + |
| 143 | + # Tensor with negative values |
| 144 | + x = torch.tensor([[-3.0, -2.0, -1.0], [-6.0, -5.0, -4.0]]) |
| 145 | + self._test_op(AmaxModel(), (x,), tester_factory) |
| 146 | + self._test_op(AmaxModel(dim=0), (x,), tester_factory) |
| 147 | + self._test_op(AmaxModel(dim=1), (x,), tester_factory) |
| 148 | + |
| 149 | + # Tensor with mixed positive and negative values |
| 150 | + x = torch.tensor([[-3.0, 2.0, -1.0], [6.0, -5.0, 4.0]]) |
| 151 | + self._test_op(AmaxModel(), (x,), tester_factory) |
| 152 | + self._test_op(AmaxModel(dim=0), (x,), tester_factory) |
| 153 | + self._test_op(AmaxModel(dim=1), (x,), tester_factory) |
| 154 | + |
| 155 | + def test_amax_edge_cases(self, tester_factory: Callable) -> None: |
| 156 | + # Test edge cases |
| 157 | + |
| 158 | + # Tensor with all same values |
| 159 | + x = torch.ones(3, 4) |
| 160 | + self._test_op(AmaxModel(), (x,), tester_factory) |
| 161 | + self._test_op(AmaxModel(dim=0), (x,), tester_factory) |
| 162 | + self._test_op(AmaxModel(dim=1), (x,), tester_factory) |
| 163 | + |
| 164 | + # Zero tensor |
| 165 | + x = torch.zeros(3, 4) |
| 166 | + self._test_op(AmaxModel(), (x,), tester_factory) |
| 167 | + self._test_op(AmaxModel(dim=0), (x,), tester_factory) |
| 168 | + self._test_op(AmaxModel(dim=1), (x,), tester_factory) |
| 169 | + |
| 170 | + # Tensor with infinity |
| 171 | + x = torch.tensor([[1.0, float('inf'), 3.0], [4.0, 5.0, float('inf')]]) |
| 172 | + self._test_op(AmaxModel(), (x,), tester_factory) |
| 173 | + self._test_op(AmaxModel(dim=0), (x,), tester_factory) |
| 174 | + self._test_op(AmaxModel(dim=1), (x,), tester_factory) |
| 175 | + |
| 176 | + # Tensor with negative infinity |
| 177 | + x = torch.tensor([[1.0, float('-inf'), 3.0], [4.0, 5.0, float('-inf')]]) |
| 178 | + self._test_op(AmaxModel(), (x,), tester_factory) |
| 179 | + self._test_op(AmaxModel(dim=0), (x,), tester_factory) |
| 180 | + self._test_op(AmaxModel(dim=1), (x,), tester_factory) |
| 181 | + |
| 182 | + # Tensor with NaN (NaN should be propagated) |
| 183 | + x = torch.tensor([[1.0, float('nan'), 3.0], [4.0, 5.0, float('nan')]]) |
| 184 | + self._test_op(AmaxModel(), (x,), tester_factory) |
| 185 | + self._test_op(AmaxModel(dim=0), (x,), tester_factory) |
| 186 | + self._test_op(AmaxModel(dim=1), (x,), tester_factory) |
| 187 | + |
| 188 | + # Single element tensor |
| 189 | + x = torch.tensor([5.0]) |
| 190 | + self._test_op(AmaxModel(), (x,), tester_factory) |
| 191 | + self._test_op(AmaxModel(dim=0), (x,), tester_factory) |
| 192 | + |
| 193 | + def test_amax_scalar(self, tester_factory: Callable) -> None: |
| 194 | + # Test with scalar input (1-element tensor) |
| 195 | + self._test_op(AmaxModel(), (torch.tensor([5.0]),), tester_factory) |
| 196 | + self._test_op(AmaxModel(dim=0), (torch.tensor([5.0]),), tester_factory) |
0 commit comments