| 
 | 1 | +# Summary  | 
 | 2 | + | 
 | 3 | +This example demonstrates how to export and run Google's [Gemma 3](https://huggingface.co/google/gemma-3-4b-it) vision-language multimodal model locally on ExecuTorch with CUDA backend support.  | 
 | 4 | + | 
 | 5 | +# Exporting the model  | 
 | 6 | +To export the model, we use [Optimum ExecuTorch](https://github.com/huggingface/optimum-executorch), a repo that enables exporting models straight from the source - from HuggingFace's Transformers repo.  | 
 | 7 | + | 
 | 8 | +## Setting up Optimum ExecuTorch  | 
 | 9 | +Install through pip package:  | 
 | 10 | +```  | 
 | 11 | +pip install optimum-executorch  | 
 | 12 | +```  | 
 | 13 | + | 
 | 14 | +Or install from source:  | 
 | 15 | +```  | 
 | 16 | +git clone https://github.com/huggingface/optimum-executorch.git  | 
 | 17 | +cd optimum-executorch  | 
 | 18 | +python install_dev.py  | 
 | 19 | +```  | 
 | 20 | + | 
 | 21 | +## CUDA Support  | 
 | 22 | +This guide focuses on CUDA backend support for Gemma3, which provides accelerated performance on NVIDIA GPUs.  | 
 | 23 | + | 
 | 24 | +### Exporting with CUDA  | 
 | 25 | +```bash  | 
 | 26 | +optimum-cli export executorch \  | 
 | 27 | +  --model "google/gemma-3-4b-it" \  | 
 | 28 | +  --task "multimodal-text-to-text" \  | 
 | 29 | +  --recipe "cuda" \  | 
 | 30 | +  --dtype bfloat16 \  | 
 | 31 | +  --device cuda \  | 
 | 32 | +  --output_dir="path/to/output/dir"  | 
 | 33 | +```  | 
 | 34 | + | 
 | 35 | +This will generate:  | 
 | 36 | +- `model.pte` - The exported model  | 
 | 37 | +- `aoti_cuda_blob.ptd` - The CUDA kernel blob required for runtime  | 
 | 38 | + | 
 | 39 | +### Exporting with INT4 Quantization (Tile Packed)  | 
 | 40 | +For improved performance and reduced memory footprint, you can export Gemma3 with INT4 weight quantization using tile-packed format:  | 
 | 41 | + | 
 | 42 | +```bash  | 
 | 43 | +optimum-cli export executorch \  | 
 | 44 | +  --model "google/gemma-3-4b-it" \  | 
 | 45 | +  --task "multimodal-text-to-text" \  | 
 | 46 | +  --recipe "cuda" \  | 
 | 47 | +  --dtype bfloat16 \  | 
 | 48 | +  --device cuda \  | 
 | 49 | +  --qlinear 4w \  | 
 | 50 | +  --qlinear_encoder 4w \  | 
 | 51 | +  --qlinear_packing_format tile_packed_to_4d \  | 
 | 52 | +  --qlinear_encoder_packing_format tile_packed_to_4d \  | 
 | 53 | +  --output_dir="path/to/output/dir"  | 
 | 54 | +```  | 
 | 55 | + | 
 | 56 | +This will generate the same files (`model.pte` and `aoti_cuda_blob.ptd`) in the `int4` directory.  | 
 | 57 | + | 
 | 58 | +See the "Building the Gemma3 runner" section below for instructions on building with CUDA support, and the "Running the model" section for runtime instructions.  | 
 | 59 | + | 
 | 60 | +# Running the model  | 
 | 61 | +To run the model, we will use the Gemma3 runner, which utilizes ExecuTorch's MultiModal runner API.  | 
 | 62 | +The Gemma3 runner will do the following:  | 
 | 63 | + | 
 | 64 | +- **Image Input**: Load image files (PNG, JPG, etc.) and format them as input tensors for the model  | 
 | 65 | +- **Text Input**: Process text prompts using the tokenizer  | 
 | 66 | +- **Feed the formatted inputs** to the multimodal runner for inference  | 
 | 67 | + | 
 | 68 | +## Obtaining the tokenizer  | 
 | 69 | +You can download the `tokenizer.json` file from [Gemma 3's HuggingFace repo](https://huggingface.co/unsloth/gemma-3-1b-it):  | 
 | 70 | +```bash  | 
 | 71 | +curl -L https://huggingface.co/unsloth/gemma-3-1b-it/resolve/main/tokenizer.json -o tokenizer.json  | 
 | 72 | +```  | 
 | 73 | + | 
 | 74 | +## Building the Gemma3 runner  | 
 | 75 | + | 
 | 76 | +### Prerequisites  | 
 | 77 | +Ensure you have a CUDA-capable GPU and CUDA toolkit installed on your system.  | 
 | 78 | + | 
 | 79 | +### Building for CUDA  | 
 | 80 | +```bash  | 
 | 81 | +# Install ExecuTorch.  | 
 | 82 | +./install_executorch.sh  | 
 | 83 | + | 
 | 84 | +# Build the multimodal runner with CUDA  | 
 | 85 | +cmake --preset llm \  | 
 | 86 | +      -DEXECUTORCH_BUILD_CUDA=ON \  | 
 | 87 | +      -DCMAKE_INSTALL_PREFIX=cmake-out \  | 
 | 88 | +      -DCMAKE_BUILD_TYPE=Release \  | 
 | 89 | +      -Bcmake-out -S.  | 
 | 90 | +cmake --build cmake-out -j$(nproc) --target install --config Release  | 
 | 91 | + | 
 | 92 | +# Build the Gemma3 runner  | 
 | 93 | +cmake -DEXECUTORCH_BUILD_CUDA=ON \  | 
 | 94 | +      -DCMAKE_BUILD_TYPE=Release \  | 
 | 95 | +      -Sexamples/models/gemma3 \  | 
 | 96 | +      -Bcmake-out/examples/models/gemma3/  | 
 | 97 | +cmake --build cmake-out/examples/models/gemma3 --target gemma3_e2e_runner --config Release  | 
 | 98 | +```  | 
 | 99 | + | 
 | 100 | +## Running the model  | 
 | 101 | +You need to provide the following files to run Gemma3:  | 
 | 102 | +- `model.pte` - The exported model file  | 
 | 103 | +- `aoti_cuda_blob.ptd` - The CUDA kernel blob  | 
 | 104 | +- `tokenizer.json` - The tokenizer file  | 
 | 105 | +- An image file (PNG, JPG, etc.)  | 
 | 106 | + | 
 | 107 | +### Example usage  | 
 | 108 | +```bash  | 
 | 109 | +./cmake-out/examples/models/gemma3/gemma3_e2e_runner \  | 
 | 110 | +  --model_path path/to/model.pte \  | 
 | 111 | +  --data_path path/to/aoti_cuda_blob.ptd \  | 
 | 112 | +  --tokenizer_path path/to/tokenizer.json \  | 
 | 113 | +  --image_path docs/source/_static/img/et-logo.png \ # here we use the ExecuTorch logo as an example  | 
 | 114 | +  --temperature 0  | 
 | 115 | +```  | 
 | 116 | + | 
 | 117 | +# Example output  | 
 | 118 | +```  | 
 | 119 | +Okay, let's break down what's in the image!  | 
 | 120 | +
  | 
 | 121 | +It appears to be a stylized graphic combining:  | 
 | 122 | +
  | 
 | 123 | +*   **A Microchip:** The core shape is a representation of a microchip (the integrated circuit).  | 
 | 124 | +*   **An "On" Symbol:**  There's an "On" symbol (often represented as a circle with a vertical line) incorporated into the microchip design.  | 
 | 125 | +*   **Color Scheme:** The microchip is colored in gray, and  | 
 | 126 | +PyTorchObserver {"prompt_tokens":271,"generated_tokens":99,"model_load_start_ms":0,"model_load_end_ms":0,"inference_start_ms":1761118126790,"inference_end_ms":1761118128385,"prompt_eval_end_ms":1761118127175,"first_token_ms":1761118127175,"aggregate_sampling_time_ms":86,"SCALING_FACTOR_UNITS_PER_SECOND":1000}  | 
 | 127 | +```  | 
0 commit comments