1111#include  < algorithm> 
1212#include  < cinttypes> 
1313#include  < cmath> 
14+ #if  defined(__aarch64__) || defined(__ARM_NEON)
15+ #include  < arm_neon.h> 
16+ #endif 
1417
1518/* *
1619 * For an input tensor, use the scale and zero_point arguments to quantize it. 
@@ -22,6 +25,8 @@ namespace native {
2225using  Tensor = exec_aten::Tensor;
2326using  Scalar = exec_aten::Scalar;
2427using  ScalarType = exec_aten::ScalarType;
28+ using  StridesType = exec_aten::StridesType;
29+ using  SizesType = exec_aten::SizesType;
2530
2631namespace  {
2732
@@ -61,6 +66,171 @@ void check_dequantize_per_tensor_args(
6166      quant_max);
6267}
6368
69+ /* *
70+  * Useful to reduce a tensor `in` over a given dimension `dim` using the 
71+  * reduce function `fn`, which should have the following signature: 
72+  * void fn(const size_t size, const size_t stride, const size_t base_ix) 
73+  * where `size` and `stride` are the size and stride of the dimension being 
74+  * reduced and `base_ix` is the index of the first element of the reduction. 
75+  */  
76+ template  <typename  Fn>
77+ void  apply_over_unpacked_dim (
78+     const  Fn& fn,
79+     const  exec_aten::Tensor& in,
80+     const  int64_t & dim) {
81+   if  (in.numel () == 0 ) {
82+     return ;
83+   }
84+ 
85+   ET_CHECK_MSG (in.dim () > 0 , " Input tensor must have at least one dimension"  );
86+   ET_CHECK_VALID_DIM (dim, in.dim ());
87+ 
88+   const  size_t  d = ET_NORMALIZE_IX (dim, in.dim ());
89+   const  size_t  dim_size = in.size (d);
90+   const  size_t  outer_size = getLeadingDims (in, d);
91+   const  size_t  inner_size = getTrailingDims (in, d);
92+   //  Loop through all outer dimensions
93+   for  (size_t  outer_idx = 0 ; outer_idx < outer_size; ++outer_idx) {
94+     //  Loop through dim
95+     for  (size_t  unpacked_dim_idx = 0 ; unpacked_dim_idx < dim_size;
96+          ++unpacked_dim_idx) {
97+       fn (inner_size, outer_idx, unpacked_dim_idx);
98+     }
99+   }
100+ }
101+ 
102+ void  dequantize_optimized (
103+     const  int8_t * in,
104+     const  double  scale,
105+     const  int64_t  zero_point,
106+     float * out,
107+     int64_t  quant_min,
108+     int64_t  quant_max,
109+     size_t  numel) {
110+   ET_CHECK_MSG (
111+       zero_point >= quant_min,
112+       " zero_point must be %"   PRId64 "  <= quant_min %"   PRId64,
113+       zero_point,
114+       quant_min);
115+   ET_CHECK_MSG (
116+       zero_point <= quant_max,
117+       " zero_point must be %"   PRId64 "  >= quant_max %"   PRId64,
118+       zero_point,
119+       quant_max);
120+   size_t  i = 0 ;
121+ #if  defined(__aarch64__) || defined(__ARM_NEON)
122+   int8x8_t  zero_point_vec = vdup_n_s8 (zero_point);
123+   float32x4_t  scales = vdupq_n_f32 (static_cast <float >(scale));
124+   constexpr  int32_t  kVecSize  = 16 ;
125+   const  size_t  num_vecs = numel / kVecSize ;
126+   const  int8_t * in_copy = in;
127+   float * out_copy = out;
128+   for  (; i < num_vecs; i++) {
129+     int8x16_t  in_vec = vld1q_s8 (in_copy);
130+     int16x8_t  sub_vec_0_7 = vsubl_s8 (vget_low_s8 (in_vec), zero_point_vec);
131+     int32x4_t  sub_vec_0_3 = vmovl_s16 (vget_low_s16 (sub_vec_0_7));
132+     int32x4_t  sub_vec_4_7 = vmovl_s16 (vget_high_s16 (sub_vec_0_7));
133+     float32x4_t  out_vec_0_3 = vmulq_f32 (vcvtq_f32_s32 (sub_vec_0_3), scales);
134+     float32x4_t  out_vec_4_7 = vmulq_f32 (vcvtq_f32_s32 (sub_vec_4_7), scales);
135+ 
136+     int16x8_t  sub_vec_8_15 = vsubl_s8 (vget_high_s8 (in_vec), zero_point_vec);
137+     int32x4_t  sub_vec_8_11 = vmovl_s16 (vget_low_s16 (sub_vec_8_15));
138+     int32x4_t  sub_vec_12_15 = vmovl_s16 (vget_high_s16 (sub_vec_8_15));
139+     float32x4_t  out_vec_8_11 = vmulq_f32 (vcvtq_f32_s32 (sub_vec_8_11), scales);
140+     float32x4_t  out_vec_12_15 = vmulq_f32 (vcvtq_f32_s32 (sub_vec_12_15), scales);
141+     vst1q_f32 (out_copy + 0 , out_vec_0_3);
142+     vst1q_f32 (out_copy + 4 , out_vec_4_7);
143+     vst1q_f32 (out_copy + 8 , out_vec_8_11);
144+     vst1q_f32 (out_copy + 12 , out_vec_12_15);
145+     in_copy += kVecSize ;
146+     out_copy += kVecSize ;
147+   }
148+   i = i * kVecSize ;
149+ #endif 
150+   for  (; i < numel; i++) {
151+     out[i] = (in[i] - zero_point) * scale;
152+   }
153+ }
154+ 
155+ bool  can_use_optimized_dequantize_per_channel (
156+     const  Tensor& in,
157+     const  ScalarType in_dtype,
158+     exec_aten::optional<ScalarType>& out_dtype) {
159+   bool  is_contiguous = false ;
160+ #ifdef  USE_ATEN_LIB
161+   is_contiguous = in.is_contiguous ();
162+ #else 
163+   is_contiguous = executorch::runtime::is_contiguous_dim_order (
164+       in.dim_order ().data (), in.dim ());
165+ #endif 
166+   if  (!is_contiguous || (in_dtype != ScalarType::Char) ||
167+       (out_dtype.has_value () && out_dtype.value () != ScalarType::Float)) {
168+     return  false ;
169+   }
170+   return  true ;
171+ }
172+ 
173+ void  dequantize_per_channel_optimized (
174+     const  Tensor& in,
175+     const  Tensor& scales,
176+     const  optional<Tensor>& opt_zero_points,
177+     Tensor& out,
178+     int64_t  axis,
179+     int64_t  quant_min,
180+     int64_t  quant_max,
181+     ScalarType in_dtype,
182+     exec_aten::optional<ScalarType>& out_dtype) {
183+   check_dequantize_per_tensor_args (
184+       in, quant_min, quant_max, in_dtype, out_dtype, out);
185+   ET_CHECK_MSG (
186+       in_dtype == ScalarType::Char,
187+       " in.scalar_type() %"   PRId8 "  is not supported:"  ,
188+       static_cast <int8_t >(in.scalar_type ()));
189+   if  (out_dtype.has_value ()) {
190+     ET_CHECK_MSG (
191+         out_dtype.value () == ScalarType::Float,
192+         " Only float output is supported"  );
193+   }
194+   const  int8_t * in_data = in.const_data_ptr <int8_t >();
195+   float * out_data = out.mutable_data_ptr <float >();
196+   const  int64_t * zero_points_data = nullptr ;
197+   if  (opt_zero_points.has_value ()) {
198+     zero_points_data = opt_zero_points.value ().const_data_ptr <int64_t >();
199+   }
200+   const  double * scales_data = scales.const_data_ptr <double >();
201+   const  StridesType axis_stride = in.strides ()[axis];
202+   const  StridesType outer_stride = in.size (axis) * axis_stride;
203+   apply_over_unpacked_dim (
204+       [in_data,
205+        out_data,
206+        scales_data,
207+        zero_points_data,
208+        axis_stride,
209+        outer_stride,
210+        quant_min,
211+        quant_max](
212+           SizesType numel, SizesType outer_idx, SizesType unpacked_dim_idx) {
213+         const  int8_t * in_data_local =
214+             in_data + outer_idx * outer_stride + unpacked_dim_idx * axis_stride;
215+         const  double  scale = scales_data[unpacked_dim_idx];
216+         const  int64_t  zero_point = zero_points_data != nullptr 
217+             ? zero_points_data[unpacked_dim_idx]
218+             : 0 ;
219+         float * out_data_local = out_data + outer_idx * outer_stride +
220+             unpacked_dim_idx * axis_stride;
221+         dequantize_optimized (
222+             in_data_local,
223+             scale,
224+             zero_point,
225+             out_data_local,
226+             quant_min,
227+             quant_max,
228+             numel);
229+       },
230+       in,
231+       axis);
232+ }
233+ 
64234} //  namespace
65235
66236/* *
@@ -225,6 +395,20 @@ Tensor& dequantize_per_channel_out(
225395  check_dequantize_per_tensor_args (
226396      input, quant_min, quant_max, dtype, out_dtype, out);
227397
398+   if  (can_use_optimized_dequantize_per_channel (input, dtype, out_dtype)) {
399+     dequantize_per_channel_optimized (
400+         input,
401+         scale,
402+         opt_zero_points,
403+         out,
404+         axis,
405+         quant_min,
406+         quant_max,
407+         dtype,
408+         out_dtype);
409+     return  out;
410+   }
411+ 
228412  //  a list contains all dimensions except axis
229413  int64_t  dims[kTensorDimensionLimit ];
230414  for  (int64_t  i = 0 ; i < input.dim () - 1 ; i++) {
0 commit comments