| 
 | 1 | +/*  | 
 | 2 | + * Copyright (c) Meta Platforms, Inc. and affiliates.  | 
 | 3 | + * All rights reserved.  | 
 | 4 | + *  | 
 | 5 | + * This source code is licensed under the BSD-style license found in the  | 
 | 6 | + * LICENSE file in the root directory of this source tree.  | 
 | 7 | + */  | 
 | 8 | + | 
 | 9 | +#include <executorch/runtime/kernel/kernel_includes.h>  | 
 | 10 | +#include <cinttypes>  | 
 | 11 | + | 
 | 12 | +// Check for Helium/MVE support  | 
 | 13 | +#if defined(__ARM_FEATURE_MVE) && (__ARM_FEATURE_MVE & 1)  | 
 | 14 | +#include <arm_mve.h>  | 
 | 15 | +#define HAS_HELIUM_SIMD 1  | 
 | 16 | +#endif  | 
 | 17 | + | 
 | 18 | +namespace cortex_m {  | 
 | 19 | +namespace native {  | 
 | 20 | + | 
 | 21 | +using Tensor = executorch::aten::Tensor;  | 
 | 22 | +using ScalarType = executorch::aten::ScalarType;  | 
 | 23 | +using KernelRuntimeContext = torch::executor::KernelRuntimeContext;  | 
 | 24 | + | 
 | 25 | +namespace {  | 
 | 26 | + | 
 | 27 | +/**  | 
 | 28 | + * Asserts that the parameters are valid for float to int8 quantization.  | 
 | 29 | + */  | 
 | 30 | +void check_dequantize_args(  | 
 | 31 | +    const Tensor& input,  | 
 | 32 | +    int64_t quant_min,  | 
 | 33 | +    int64_t quant_max,  | 
 | 34 | +    ScalarType dtype,  | 
 | 35 | +    Tensor& out) {  | 
 | 36 | +  // Ensure input is char type  | 
 | 37 | +  ET_CHECK_MSG(  | 
 | 38 | +      input.scalar_type() == ScalarType::Char,  | 
 | 39 | +      "input.scalar_type() %" PRId8 " is not char type",  | 
 | 40 | +      static_cast<int8_t>(input.scalar_type()));  | 
 | 41 | + | 
 | 42 | +  // Check output dtype is float  | 
 | 43 | +  ET_CHECK_MSG(  | 
 | 44 | +      out.scalar_type() == ScalarType::Float,  | 
 | 45 | +      "out.scalar_type() %" PRId8 " is not float",  | 
 | 46 | +      static_cast<int8_t>(out.scalar_type()));  | 
 | 47 | + | 
 | 48 | +  // Check dtype is int8 (Char)  | 
 | 49 | +  ET_CHECK_MSG(  | 
 | 50 | +      dtype == ScalarType::Char,  | 
 | 51 | +      "dtype %" PRId8 " is not int8 (Char)",  | 
 | 52 | +      static_cast<int8_t>(dtype));  | 
 | 53 | + | 
 | 54 | +  // Validate quant_min and quant_max for int8  | 
 | 55 | +  int32_t quant_min_lower_bound = std::numeric_limits<int8_t>::min();  | 
 | 56 | +  int32_t quant_max_upper_bound = std::numeric_limits<int8_t>::max();  | 
 | 57 | + | 
 | 58 | +  ET_CHECK_MSG(  | 
 | 59 | +      quant_min >= quant_min_lower_bound,  | 
 | 60 | +      "quant_min out of bound for int8, expected quant_min_lower_bound: %" PRId32  | 
 | 61 | +      " actual quant_min: %" PRId64,  | 
 | 62 | +      quant_min_lower_bound,  | 
 | 63 | +      quant_min);  | 
 | 64 | + | 
 | 65 | +  ET_CHECK_MSG(  | 
 | 66 | +      quant_max <= quant_max_upper_bound,  | 
 | 67 | +      "quant_max out of bound for int8, expected quant_max_upper_bound: %" PRId32  | 
 | 68 | +      " actual quant_max: %" PRId64,  | 
 | 69 | +      quant_max_upper_bound,  | 
 | 70 | +      quant_max);  | 
 | 71 | +}  | 
 | 72 | + | 
 | 73 | +/**  | 
 | 74 | + * Scalar implementation of quantization for a single value.  | 
 | 75 | + */  | 
 | 76 | +template <typename K, typename T>  | 
 | 77 | +T dequantize_val(  | 
 | 78 | +    float scale,  | 
 | 79 | +    int32_t zero_point,  | 
 | 80 | +    K value,  | 
 | 81 | +    int64_t quant_min,  | 
 | 82 | +    int64_t quant_max) {  | 
 | 83 | +  (void) quant_min;  | 
 | 84 | +  (void) quant_max;  | 
 | 85 | +  return static_cast<T>((static_cast<int32_t>(value) - zero_point) * scale);  | 
 | 86 | +}  | 
 | 87 | + | 
 | 88 | +} // namespace  | 
 | 89 | + | 
 | 90 | +Tensor& dequantize_per_tensor_out(  | 
 | 91 | +    KernelRuntimeContext& context,  | 
 | 92 | +    const Tensor& input,  | 
 | 93 | +    double scale,  | 
 | 94 | +    int64_t zero_point,  | 
 | 95 | +    int64_t quant_min,  | 
 | 96 | +    int64_t quant_max,  | 
 | 97 | +    ScalarType dtype,  | 
 | 98 | +    Tensor& out) {  | 
 | 99 | +  // Ignore context for now  | 
 | 100 | +  (void)context;  | 
 | 101 | + | 
 | 102 | +  // Resize output tensor to match input dimensions  | 
 | 103 | +  torch::executor::Error err = resize_tensor(out, input.sizes());  | 
 | 104 | +  ET_CHECK_MSG(  | 
 | 105 | +      err == torch::executor::Error::Ok,  | 
 | 106 | +      "Failed to resize out Tensor in dequantize_per_tensor_out");  | 
 | 107 | + | 
 | 108 | +  // Validate input parameters  | 
 | 109 | +  check_dequantize_args(input, quant_min, quant_max, dtype, out);  | 
 | 110 | + | 
 | 111 | +  // Pre-compute inverse scale for better performance  | 
 | 112 | +  int32_t zp = static_cast<int32_t>(zero_point);  | 
 | 113 | +  int32_t qmin = static_cast<int32_t>(quant_min);  | 
 | 114 | +  int32_t qmax = static_cast<int32_t>(quant_max);  | 
 | 115 | + | 
 | 116 | +  // Get pointers to input and output data  | 
 | 117 | +  const int8_t* input_data = input.const_data_ptr<int8_t>();  | 
 | 118 | +  float* out_data = out.mutable_data_ptr<float>();  | 
 | 119 | +  const size_t numel = input.numel();  | 
 | 120 | + | 
 | 121 | +#if defined(HAS_HELIUM_SIMD)  | 
 | 122 | +  // Helium MVE implementation for float32 to int8 quantization  | 
 | 123 | +  #Error "Implement MVE version!"  | 
 | 124 | +#else  | 
 | 125 | +  // Scalar implementation for float32 to int8 quantization  | 
 | 126 | +  for (size_t i = 0; i < numel; i++) {  | 
 | 127 | +    out_data[i] = dequantize_val<int8_t, float>(scale, zp, input_data[i], qmin, qmax);  | 
 | 128 | +  }  | 
 | 129 | +#endif  | 
 | 130 | + | 
 | 131 | +  return out;  | 
 | 132 | +}  | 
 | 133 | + | 
 | 134 | +Tensor& dequantize_per_tensor_out(  | 
 | 135 | +    const Tensor& input,  | 
 | 136 | +    double scale,  | 
 | 137 | +    int64_t zero_point,  | 
 | 138 | +    int64_t quant_min,  | 
 | 139 | +    int64_t quant_max,  | 
 | 140 | +    ScalarType dtype,  | 
 | 141 | +    Tensor& out) {  | 
 | 142 | +    KernelRuntimeContext context;  | 
 | 143 | +    return dequantize_per_tensor_out(context, input, scale, zero_point, quant_min, quant_max, dtype, out);  | 
 | 144 | +}  | 
 | 145 | +    | 
 | 146 | +} // namespace native  | 
 | 147 | +} // namespace cortex_m  | 
0 commit comments