| 
 | 1 | +# Copyright (c) Qualcomm Innovation Center, Inc.  | 
 | 2 | +# All rights reserved  | 
 | 3 | +#  | 
 | 4 | +# This source code is licensed under the BSD-style license found in the  | 
 | 5 | +# LICENSE file in the root directory of this source tree.  | 
 | 6 | +import torch  | 
 | 7 | + | 
 | 8 | +from executorch.exir.pass_base import ExportPass, PassResult  | 
 | 9 | + | 
 | 10 | +from .utils import copy_nn_module_stack  | 
 | 11 | + | 
 | 12 | + | 
 | 13 | +class SliceCopy(torch.nn.Module):  | 
 | 14 | +    def __init__(self, val_shape, shifts, dims):  | 
 | 15 | +        super().__init__()  | 
 | 16 | +        self.val_shape = val_shape  | 
 | 17 | +        if dims[0] is None:  | 
 | 18 | +            self.shifts = [shifts[0] % torch.numel(torch.tensor(val_shape))]  | 
 | 19 | +        else:  | 
 | 20 | +            self.shifts = [shift % val_shape[dim] for shift, dim in zip(shifts, dims)]  | 
 | 21 | +        self.dims = dims  | 
 | 22 | + | 
 | 23 | +    def forward(self, x):  | 
 | 24 | +        if self.dims[0] is None:  | 
 | 25 | +            y = x.flatten()  | 
 | 26 | +            y = torch.cat((y[-self.shifts[0] :], y[: -self.shifts[0]]))  | 
 | 27 | +            return y.view(self.val_shape)  | 
 | 28 | + | 
 | 29 | +        for shift, dim in zip(self.shifts, self.dims):  | 
 | 30 | +            x = torch.cat(  | 
 | 31 | +                (  | 
 | 32 | +                    x[(slice(None),) * dim + (slice(-shift, None),)],  | 
 | 33 | +                    x[(slice(None),) * dim + (slice(0, -shift),)],  | 
 | 34 | +                ),  | 
 | 35 | +                dim=dim,  | 
 | 36 | +            )  | 
 | 37 | +        return x  | 
 | 38 | + | 
 | 39 | + | 
 | 40 | +class DecomposeRoll(ExportPass):  | 
 | 41 | +    """  | 
 | 42 | +    Decompose roll into slice and cat.  | 
 | 43 | +    """  | 
 | 44 | + | 
 | 45 | +    def __init__(self) -> None:  | 
 | 46 | +        super().__init__()  | 
 | 47 | + | 
 | 48 | +    def call(self, graph_module: torch.fx.GraphModule) -> PassResult:  | 
 | 49 | +        graph = graph_module.graph  | 
 | 50 | +        for node in graph.nodes:  | 
 | 51 | +            if "roll" in str(node.target):  | 
 | 52 | +                input_node, shifts = node.args[0], node.args[1]  | 
 | 53 | +                dims = node.args[2] if len(node.args) == 3 else None  | 
 | 54 | + | 
 | 55 | +                # Normalize shifts and dims to lists  | 
 | 56 | +                shifts = shifts if isinstance(shifts, (list, tuple)) else [shifts]  | 
 | 57 | +                dims = dims if isinstance(dims, (list, tuple)) else [dims]  | 
 | 58 | + | 
 | 59 | +                model = SliceCopy(input_node.meta["val"].shape, shifts, dims)  | 
 | 60 | +                decomposed_module = torch.export.export(  | 
 | 61 | +                    model, (input_node.meta["val"],), strict=True  | 
 | 62 | +                ).module()  | 
 | 63 | + | 
 | 64 | +                with graph.inserting_before(node):  | 
 | 65 | +                    # remap is used to map original node values to new node values,  | 
 | 66 | +                    # which ensures that reference to nodes are correctly updated in the new graph  | 
 | 67 | +                    remap = {"x": input_node}  | 
 | 68 | + | 
 | 69 | +                    for decomposed_node in decomposed_module.graph.nodes:  | 
 | 70 | +                        copy_nn_module_stack(node, decomposed_node)  | 
 | 71 | +                        # no need to copy existent 'output'  | 
 | 72 | +                        if decomposed_node.op == "output":  | 
 | 73 | +                            for user in node.users.copy():  | 
 | 74 | +                                # remap  | 
 | 75 | +                                user.replace_input_with(  | 
 | 76 | +                                    node,  | 
 | 77 | +                                    remap[decomposed_node.args[0][0]],  | 
 | 78 | +                                )  | 
 | 79 | +                        # no need to copy existent placeholders  | 
 | 80 | +                        elif decomposed_node.op == "placeholder":  | 
 | 81 | +                            # replace node map from string to graph node  | 
 | 82 | +                            remap[decomposed_node] = remap.pop(decomposed_node.name)  | 
 | 83 | +                        else:  | 
 | 84 | +                            remap[decomposed_node] = graph.node_copy(  | 
 | 85 | +                                decomposed_node,  | 
 | 86 | +                                arg_transform=lambda x, remap=remap: remap[x],  | 
 | 87 | +                            )  | 
 | 88 | + | 
 | 89 | +                    graph.erase_node(node)  | 
 | 90 | + | 
 | 91 | +        graph.eliminate_dead_code()  | 
 | 92 | +        graph_module.recompile()  | 
 | 93 | +        return PassResult(graph_module, True)  | 
0 commit comments