@@ -22,6 +22,8 @@ namespace native {
2222using Tensor = exec_aten::Tensor;
2323using Scalar = exec_aten::Scalar;
2424using ScalarType = exec_aten::ScalarType;
25+ using StridesType = exec_aten::StridesType;
26+ using SizesType = exec_aten::SizesType;
2527
2628namespace {
2729
@@ -61,6 +63,163 @@ void check_dequantize_per_tensor_args(
6163 quant_max);
6264}
6365
66+ /* *
67+ * Useful to reduce a tensor `in` over a given dimension `dim` using the
68+ * reduce function `fn`, which should have the following signature:
69+ * void fn(const size_t size, const size_t stride, const size_t base_ix)
70+ * where `size` and `stride` are the size and stride of the dimension being
71+ * reduced and `base_ix` is the index of the first element of the reduction.
72+ */
73+ template <typename Fn>
74+ void apply_over_unpacked_dim (
75+ const Fn& fn,
76+ const exec_aten::Tensor& in,
77+ const int64_t & dim) {
78+ if (in.numel () == 0 ) {
79+ return ;
80+ }
81+
82+ ET_CHECK_MSG (in.dim () > 0 , " Input tensor must have at least one dimension" );
83+ ET_CHECK_VALID_DIM (dim, in.dim ());
84+
85+ const size_t d = ET_NORMALIZE_IX (dim, in.dim ());
86+ const size_t dim_size = in.size (d);
87+ const size_t outer_size = getLeadingDims (in, d);
88+ const size_t inner_size = getTrailingDims (in, d);
89+ // Loop through all outer dimensions
90+ for (size_t outer_idx = 0 ; outer_idx < outer_size; ++outer_idx) {
91+ // Loop through dim
92+ for (size_t unpacked_dim_idx = 0 ; unpacked_dim_idx < dim_size;
93+ ++unpacked_dim_idx) {
94+ fn (inner_size, outer_idx, unpacked_dim_idx);
95+ }
96+ }
97+ }
98+
99+ void dequantize_optimized (
100+ const int8_t * in,
101+ const double scale,
102+ const int64_t zero_point,
103+ float * out,
104+ int64_t quant_min,
105+ int64_t quant_max,
106+ size_t numel) {
107+ ET_CHECK_MSG (
108+ zero_point >= quant_min,
109+ " zero_point must be %" PRId64 " <= quant_min %" PRId64,
110+ zero_point,
111+ quant_min);
112+ ET_CHECK_MSG (
113+ zero_point <= quant_max,
114+ " zero_point must be %" PRId64 " >= quant_max %" PRId64,
115+ zero_point,
116+ quant_max);
117+ size_t i = 0 ;
118+ #if defined(__aarch64__) || defined(__ARM_NEON)
119+ int8x8_t zero_point_vec = vdup_n_s8 (zero_point);
120+ float32x4_t scales = vdupq_n_f32 (static_cast <float >(scale));
121+ constexpr int32_t kVecSize = 16 ;
122+ const size_t num_vecs = numel / kVecSize ;
123+ const size_t rem = numel % kVecSize ;
124+ for (; i < numel; i += kVecSize ) {
125+ int8x16_t in_vec = vld1q_s8 (in);
126+ int16x8_t sub_vec_0_7 = vsubl_s8 (vget_low_s8 (in_vec), zero_point_vec);
127+ int32x4_t sub_vec_0_3 = vmovl_s16 (vget_low_s16 (sub_vec_0_7));
128+ int32x4_t sub_vec_4_7 = vmovl_s16 (vget_high_s16 (sub_vec_0_7));
129+ float32x4_t out_vec_0_3 = vmulq_f32 (vcvtq_f32_s32 (sub_vec_0_3), scales);
130+ float32x4_t out_vec_4_7 = vmulq_f32 (vcvtq_f32_s32 (sub_vec_4_7), scales);
131+
132+ int16x8_t sub_vec_8_15 = vsubl_s8 (vget_high_s8 (in_vec), zero_point_vec);
133+ int32x4_t sub_vec_8_11 = vmovl_s16 (vget_low_s16 (sub_vec_8_15));
134+ int32x4_t sub_vec_12_15 = vmovl_s16 (vget_high_s16 (sub_vec_8_15));
135+ float32x4_t out_vec_8_11 = vmulq_f32 (vcvtq_f32_s32 (sub_vec_8_11), scales);
136+ float32x4_t out_vec_12_15 = vmulq_f32 (vcvtq_f32_s32 (sub_vec_12_15), scales);
137+ in += kVecSize ;
138+ }
139+ #endif
140+ for (; i < numel; i++) {
141+ out[i] = (in[i] - zero_point) * scale;
142+ }
143+ }
144+
145+ bool can_use_optimized_dequantize_per_channel (
146+ const Tensor& in,
147+ const ScalarType in_dtype,
148+ exec_aten::optional<ScalarType>& out_dtype) {
149+ if (!executorch::runtime::is_contiguous_dim_order (
150+ in.dim_order ().data (), in.dim ()) ||
151+ (in_dtype != ScalarType::Char) ||
152+ (out_dtype.has_value () && out_dtype.value () != ScalarType::Float)) {
153+ return false ;
154+ }
155+ return true ;
156+ }
157+
158+ void dequantize_per_channel_optimized (
159+ const Tensor& in,
160+ const Tensor& scales,
161+ const optional<Tensor>& opt_zero_points,
162+ Tensor& out,
163+ int64_t axis,
164+ int64_t quant_min,
165+ int64_t quant_max,
166+ ScalarType in_dtype,
167+ exec_aten::optional<ScalarType>& out_dtype) {
168+ check_dequantize_per_tensor_args (
169+ in, quant_min, quant_max, in_dtype, out_dtype, out);
170+ ET_CHECK_MSG (
171+ executorch::runtime::is_contiguous_dim_order (
172+ in.dim_order ().data (), in.dim ()),
173+ " in must be in contiguous dim order" );
174+ ET_CHECK_MSG (
175+ in_dtype == ScalarType::Char,
176+ " in.scalar_type() %" PRId8 " is not supported:" ,
177+ static_cast <int8_t >(in.scalar_type ()));
178+ if (out_dtype.has_value ()) {
179+ ET_CHECK_MSG (
180+ out_dtype.value () == ScalarType::Float,
181+ " Only float output is supported" );
182+ }
183+ const int8_t * in_data = in.const_data_ptr <int8_t >();
184+ float * out_data = out.mutable_data_ptr <float >();
185+ const int64_t * zero_points_data = nullptr ;
186+ if (opt_zero_points.has_value ()) {
187+ zero_points_data = opt_zero_points.value ().const_data_ptr <int64_t >();
188+ }
189+ const double * scales_data = scales.const_data_ptr <double >();
190+ const StridesType axis_stride = in.strides ()[axis];
191+ const StridesType outer_stride = in.size (axis) * axis_stride;
192+ apply_over_unpacked_dim (
193+ [in_data,
194+ out_data,
195+ scales_data,
196+ zero_points_data,
197+ axis_stride,
198+ outer_stride,
199+ quant_min,
200+ quant_max](
201+ SizesType numel, SizesType outer_idx, SizesType unpacked_dim_idx) {
202+ const int8_t * in_data_local =
203+ in_data + outer_idx * outer_stride + unpacked_dim_idx * axis_stride;
204+ const double scale = scales_data[unpacked_dim_idx];
205+ const int64_t zero_point = zero_points_data != nullptr
206+ ? zero_points_data[unpacked_dim_idx]
207+ : 0 ;
208+ float * out_data_local = out_data + outer_idx * outer_stride +
209+ unpacked_dim_idx * axis_stride;
210+ dequantize_optimized (
211+ in_data_local,
212+ scale,
213+ zero_point,
214+ out_data_local,
215+ quant_min,
216+ quant_max,
217+ numel);
218+ },
219+ in,
220+ axis);
221+ }
222+
64223} // namespace
65224
66225/* *
@@ -217,6 +376,20 @@ Tensor& dequantize_per_channel_out(
217376 check_dequantize_per_tensor_args (
218377 input, quant_min, quant_max, dtype, out_dtype, out);
219378
379+ if (can_use_optimized_dequantize_per_channel (input, dtype, out_dtype)) {
380+ dequantize_per_channel_optimized (
381+ input,
382+ scale,
383+ opt_zero_points,
384+ out,
385+ axis,
386+ quant_min,
387+ quant_max,
388+ dtype,
389+ out_dtype);
390+ return out;
391+ }
392+
220393 // a list contains all dimensions except axis
221394 int64_t dims[kTensorDimensionLimit ];
222395 for (int64_t i = 0 ; i < input.dim () - 1 ; i++) {
0 commit comments