@@ -1346,11 +1346,21 @@ def test_qnn_backend_conv2d_down_up_sample(self):
13461346 sample_input = (torch .randn (1 , 16 , 224 , 224 ),)
13471347 self .lower_module_and_test_output (module , sample_input )
13481348
1349+ def test_qnn_backend_conv2d_flip (self ):
1350+ module = Conv2dFlip () # noqa: F405
1351+ sample_input = (torch .randn (1 , 16 , 224 , 224 ),)
1352+ self .lower_module_and_test_output (module , sample_input )
1353+
13491354 def test_qnn_backend_conv2d_max_pool2d (self ):
13501355 module = Conv2dMaxPool2d () # noqa: F405
13511356 sample_input = (torch .rand (1 , 2 , 14 , 14 ),)
13521357 self .lower_module_and_test_output (module , sample_input )
13531358
1359+ def test_qnn_backend_conv2d_slice_copy (self ):
1360+ module = Conv2dSliceCopy () # noqa: F405
1361+ sample_input = (torch .randn ([2 , 1 , 3 , 3 ]),)
1362+ self .lower_module_and_test_output (module , sample_input )
1363+
13541364 def test_qnn_backend_conv2d_sum_reduce_dim (self ):
13551365 module = Conv2dSumReduceDim () # noqa: F405
13561366 sample_input = (torch .randn ([1 , 1 , 3 , 3 ]),)
@@ -2955,12 +2965,24 @@ def test_qnn_backend_conv2d_down_up_sample(self):
29552965 module = self .get_qdq_module (module , sample_input )
29562966 self .lower_module_and_test_output (module , sample_input )
29572967
2968+ def test_qnn_backend_conv2d_flip (self ):
2969+ module = Conv2dFlip () # noqa: F405
2970+ sample_input = (torch .randn (1 , 16 , 224 , 224 ),)
2971+ module = self .get_qdq_module (module , sample_input )
2972+ self .lower_module_and_test_output (module , sample_input )
2973+
29582974 def test_qnn_backend_conv2d_max_pool2d (self ):
29592975 module = Conv2dMaxPool2d () # noqa: F405
29602976 sample_input = (torch .rand (1 , 2 , 14 , 14 ),)
29612977 module = self .get_qdq_module (module , sample_input )
29622978 self .lower_module_and_test_output (module , sample_input )
29632979
2980+ def test_qnn_backend_conv2d_slice_copy (self ):
2981+ module = Conv2dSliceCopy () # noqa: F405
2982+ sample_input = (torch .randn ([2 , 1 , 3 , 3 ]),)
2983+ module = self .get_qdq_module (module , sample_input )
2984+ self .lower_module_and_test_output (module , sample_input )
2985+
29642986 def test_qnn_backend_conv2d_sum_reduce_dim (self ):
29652987 module = Conv2dSumReduceDim () # noqa: F405
29662988 sample_input = (torch .randn ([1 , 1 , 3 , 3 ]),)
0 commit comments