|
| 1 | +/* |
| 2 | + * Copyright (c) Meta Platforms, Inc. and affiliates. |
| 3 | + * All rights reserved. |
| 4 | + * |
| 5 | + * This source code is licensed under the BSD-style license found in the |
| 6 | + * LICENSE file in the root directory of this source tree. |
| 7 | + */ |
| 8 | + |
| 9 | +#include <executorch/runtime/core/exec_aten/util/dim_order_util.h> |
| 10 | +#include <executorch/runtime/kernel/kernel_includes.h> |
| 11 | + |
| 12 | +namespace torch { |
| 13 | +namespace executor { |
| 14 | +namespace native { |
| 15 | + |
| 16 | +using Tensor = executorch::aten::Tensor; |
| 17 | +using SizesArrayRef = executorch::aten::ArrayRef<executorch::aten::SizesType>; |
| 18 | +using DimOrderArrayRef = |
| 19 | + executorch::aten::ArrayRef<executorch::aten::DimOrderType>; |
| 20 | +using MemoryFormat = executorch::aten::MemoryFormat; |
| 21 | + |
| 22 | +template <typename T> |
| 23 | +using OptionalArrayRef = executorch::aten::OptionalArrayRef<T>; |
| 24 | + |
| 25 | +template <typename T> |
| 26 | +using Optional = std::optional<T>; |
| 27 | + |
| 28 | +namespace { |
| 29 | +Optional<MemoryFormat> get_memory_format(OptionalArrayRef<int64_t> dim_order) { |
| 30 | + if (!dim_order.has_value()) { |
| 31 | + return executorch::aten::nullopt; |
| 32 | + } |
| 33 | + if (is_contiguous_dim_order( |
| 34 | + dim_order.value().data(), dim_order.value().size())) { |
| 35 | + return MemoryFormat::Contiguous; |
| 36 | + } else if (is_channels_last_dim_order( |
| 37 | + dim_order.value().data(), dim_order.value().size())) { |
| 38 | + return MemoryFormat::ChannelsLast; |
| 39 | + } else { |
| 40 | + ET_ASSERT_UNREACHABLE(); |
| 41 | + } |
| 42 | +} |
| 43 | + |
| 44 | +bool check__clone_dim_order_args( |
| 45 | + const Tensor& input, |
| 46 | + bool non_blocking, |
| 47 | + executorch::aten::OptionalArrayRef<int64_t> dim_order, |
| 48 | + Tensor& out) { |
| 49 | + // Right now we only support blocking data transfer |
| 50 | + ET_LOG_AND_RETURN_IF_FALSE(non_blocking == false); |
| 51 | + |
| 52 | + // Ensure input and output dtype match |
| 53 | + ET_LOG_AND_RETURN_IF_FALSE(input.scalar_type() == out.scalar_type()); |
| 54 | + |
| 55 | + // dim_order is set, the target dim_order will be either contiguous or |
| 56 | + // channels_last memory format |
| 57 | + if (dim_order.has_value()) { |
| 58 | + executorch::aten::ArrayRef<int64_t> dim_order_ref = dim_order.value(); |
| 59 | + |
| 60 | + // dim order size shall equal to input dim |
| 61 | + ET_LOG_AND_RETURN_IF_FALSE(dim_order_ref.size() == input.dim()); |
| 62 | + |
| 63 | + ET_LOG_AND_RETURN_IF_FALSE( |
| 64 | + is_channels_last_dim_order( |
| 65 | + dim_order.value().data(), dim_order.value().size()) || |
| 66 | + is_contiguous_dim_order( |
| 67 | + dim_order.value().data(), dim_order.value().size())); |
| 68 | + |
| 69 | + // Out Aten tensor shall have same memory format stride as dim_order |
| 70 | + const size_t kMaxNumOfDimensions = 16; |
| 71 | + ET_LOG_AND_RETURN_IF_FALSE(kMaxNumOfDimensions >= out.dim()); |
| 72 | + executorch::aten::StridesType target_strides[kMaxNumOfDimensions]; |
| 73 | + dim_order_to_stride_nocheck( |
| 74 | + out.sizes().data(), |
| 75 | + dim_order_ref.data(), |
| 76 | + dim_order_ref.size(), |
| 77 | + target_strides); |
| 78 | + ET_LOG_AND_RETURN_IF_FALSE(out.dim() == dim_order_ref.size()); |
| 79 | + for (size_t i = 0; i < dim_order_ref.size(); i++) { |
| 80 | + ET_LOG_AND_RETURN_IF_FALSE(target_strides[i] == out.strides()[i]); |
| 81 | + } |
| 82 | + |
| 83 | + } else { // dim_order is not set, preserve the dim order of input |
| 84 | + |
| 85 | + auto out_strides = out.strides(); |
| 86 | + auto input_strides = input.strides(); |
| 87 | + ET_LOG_AND_RETURN_IF_FALSE(input_strides.size() == out_strides.size()); |
| 88 | + for (size_t i = 0; i < input_strides.size(); i++) { |
| 89 | + ET_LOG_AND_RETURN_IF_FALSE(input_strides[i] == out_strides[i]); |
| 90 | + } |
| 91 | + } |
| 92 | + return true; |
| 93 | +} |
| 94 | +} // namespace |
| 95 | + |
| 96 | +// _clone_dim_order.out(Tensor self, *, bool non_blocking=False, int[]? |
| 97 | +// dim_order=None, Tensor(a!) out) -> Tensor(a!) |
| 98 | +Tensor& _clone_dim_order_out( |
| 99 | + KernelRuntimeContext& ctx, |
| 100 | + const Tensor& self, |
| 101 | + bool non_blocking, |
| 102 | + OptionalArrayRef<int64_t> dim_order, |
| 103 | + Tensor& out) { |
| 104 | + // TODO(T181345875): enable sanity check in aten mode |
| 105 | + ET_KERNEL_CHECK( |
| 106 | + ctx, |
| 107 | + check__clone_dim_order_args(self, non_blocking, dim_order, out), |
| 108 | + InvalidArgument, |
| 109 | + out); |
| 110 | + |
| 111 | + Optional<MemoryFormat> memory_format = get_memory_format(dim_order); |
| 112 | + at::clone_outf(self, memory_format, out); |
| 113 | + |
| 114 | + return out; |
| 115 | +} |
| 116 | + |
| 117 | +Tensor& _clone_dim_order_out( |
| 118 | + const Tensor& self, |
| 119 | + bool non_blocking, |
| 120 | + OptionalArrayRef<int64_t> dim_order, |
| 121 | + Tensor& out) { |
| 122 | + KernelRuntimeContext ctx{}; |
| 123 | + return _clone_dim_order_out(ctx, self, non_blocking, dim_order, out); |
| 124 | +} |
| 125 | + |
| 126 | +} // namespace native |
| 127 | +} // namespace executor |
| 128 | +} // namespace torch |
0 commit comments