66
77import  logging 
88from  enum  import  Enum 
9- from  typing  import  Tuple 
9+ from  typing  import  Optional ,  Tuple 
1010
1111import  torch 
1212import  torch .nn  as  nn 
@@ -93,7 +93,7 @@ def _quantize(self, value):
9393        )
9494        return  quantized_value , scales , zero_points 
9595
96-     def  _quantize_and_update (self , input_pos , k_val , v_val ):
96+     def  _quantize_and_update (self , input_pos , k_val , v_val ,  indices = None ):
9797        quantized_k_val , k_scales , k_zero_points  =  self ._quantize (k_val )
9898        quantized_v_val , v_scales , v_zero_points  =  self ._quantize (v_val )
9999
@@ -104,26 +104,37 @@ def _quantize_and_update(self, input_pos, k_val, v_val):
104104
105105        if  self .use_custom_update_cache_op :
106106            start_pos  =  input_pos [0 ].item ()
107-             _  =  torch .ops .llama .update_cache (quantized_k_val , self .k_cache , start_pos )
108-             _  =  torch .ops .llama .update_cache (k_scales , self .k_cache_scales , start_pos )
109107            _  =  torch .ops .llama .update_cache (
110-                 k_zero_points , self .k_cache_zero_points , start_pos 
108+                 quantized_k_val , self .k_cache , start_pos ,  indices 
111109            )
112-             _  =  torch .ops .llama .update_cache (quantized_v_val , self .v_cache , start_pos )
113-             _  =  torch .ops .llama .update_cache (v_scales , self .v_cache_scales , start_pos )
114110            _  =  torch .ops .llama .update_cache (
115-                 v_zero_points , self .v_cache_zero_points , start_pos 
111+                 k_scales , self .k_cache_scales , start_pos , indices 
112+             )
113+             _  =  torch .ops .llama .update_cache (
114+                 k_zero_points , self .k_cache_zero_points , start_pos , indices 
115+             )
116+             _  =  torch .ops .llama .update_cache (
117+                 quantized_v_val , self .v_cache , start_pos , indices 
118+             )
119+             _  =  torch .ops .llama .update_cache (
120+                 v_scales , self .v_cache_scales , start_pos , indices 
121+             )
122+             _  =  torch .ops .llama .update_cache (
123+                 v_zero_points , self .v_cache_zero_points , start_pos , indices 
116124            )
117125        else :
126+             assert  indices  is  None , "Indices not supported for this path" 
127+             # Following is also broken because in prefill input_pos = [0] 
128+             # but we need to update some slice of cache 
118129            self .k_cache [:, input_pos ] =  quantized_k_val 
119130            self .k_cache_scales [:, input_pos ] =  k_scales 
120131            self .k_cache_zero_points [:, input_pos ] =  k_zero_points 
121132            self .v_cache [:, input_pos ] =  quantized_v_val 
122133            self .v_cache_scales [:, input_pos ] =  v_scales 
123134            self .v_cache_zero_points [:, input_pos ] =  v_zero_points 
124135
125-     def  _update_and_return_float_values (self , input_pos , k_val , v_val ):
126-         self ._quantize_and_update (input_pos , k_val , v_val )
136+     def  _update_and_return_float_values (self , input_pos , k_val , v_val ,  indices = None ):
137+         self ._quantize_and_update (input_pos , k_val , v_val ,  indices )
127138
128139        k_out  =  torch .ops .quantized_decomposed .dequantize_per_token (
129140            self .k_cache ,
@@ -144,24 +155,26 @@ def _update_and_return_float_values(self, input_pos, k_val, v_val):
144155            self .cache_fp_type ,
145156        )
146157
147-         # When returning float values we jsut  use the last value 
158+         # When returning float values we just  use the last value 
148159        # instead of dequantized value. 
149160        start_pos  =  input_pos [0 ].item ()
150161        if  self .use_custom_update_cache_op :
151-             _  =  torch .ops .llama .update_cache (k_val , k_out , start_pos )
152-             _  =  torch .ops .llama .update_cache (v_val , v_out , start_pos )
162+             _  =  torch .ops .llama .update_cache (k_val , k_out , start_pos ,  indices )
163+             _  =  torch .ops .llama .update_cache (v_val , v_out , start_pos ,  indices )
153164        else :
154165            k_out [:, input_pos ] =  k_val 
155166            v_out [:, input_pos ] =  v_val 
156167
157168        return  k_out , v_out 
158169
159-     def  _update_and_return_quantized_values (self , input_pos , k_val , v_val ):
160-         self ._quantize_and_update (input_pos , k_val , v_val )
170+     def  _update_and_return_quantized_values (
171+         self , input_pos , k_val , v_val , indices = None 
172+     ):
173+         self ._quantize_and_update (input_pos , k_val , v_val , indices )
161174
162175        return  self .k_cache , self .v_cache 
163176
164-     def  update (self , input_pos , k_val , v_val ):
177+     def  update (self , input_pos , k_val , v_val ,  indices = None ):
165178        """ 
166179        k_val, v_val: [B, H, S, D] 
167180        return: [B, H, S, D] 
@@ -172,10 +185,12 @@ def update(self, input_pos, k_val, v_val):
172185        v_val  =  v_val .transpose (1 , 2 )
173186
174187        if  self .return_float_values :
175-             k_out , v_out  =  self ._update_and_return_float_values (input_pos , k_val , v_val )
188+             k_out , v_out  =  self ._update_and_return_float_values (
189+                 input_pos , k_val , v_val , indices 
190+             )
176191        else :
177192            k_out , v_out  =  self ._update_and_return_quantized_values (
178-                 input_pos , k_val , v_val 
193+                 input_pos , k_val , v_val ,  indices 
179194            )
180195        return  k_out .transpose (1 , 2 ), v_out .transpose (1 , 2 )
181196
@@ -277,14 +292,20 @@ def __init__(
277292        )
278293
279294    def  update (
280-         self , input_pos : torch .Tensor , k_val : torch .Tensor , v_val : torch .Tensor 
295+         self ,
296+         input_pos : torch .Tensor ,
297+         k_val : torch .Tensor ,
298+         v_val : torch .Tensor ,
299+         indices : Optional [torch .Tensor ] =  None ,
281300    ) ->  Tuple [torch .Tensor , torch .Tensor ]:
282301        # input_pos: [S], k_val: [B, H, S, D] 
283302        k_val  =  k_val .transpose (1 , 2 )
284303        v_val  =  v_val .transpose (1 , 2 )
285304        start_pos  =  input_pos [0 ].item ()
286-         _  =  torch .ops .llama .update_cache (k_val , self .k_cache , start_pos )
287-         _  =  torch .ops .llama .update_cache (v_val , self .v_cache , start_pos )
305+ 
306+         _  =  torch .ops .llama .update_cache (k_val , self .k_cache , start_pos , indices )
307+         _  =  torch .ops .llama .update_cache (v_val , self .v_cache , start_pos , indices )
308+ 
288309        return  (
289310            self .k_cache .transpose (1 , 2 ),
290311            self .v_cache .transpose (1 , 2 ),
0 commit comments