2020
2121#define op(X, A, B) ${OPERATOR}
2222
23- #include "indexing_utils_u16 .h"
23+ #include "indexing_utils .h"
2424
2525layout (std430) buffer ;
2626
@@ -43,35 +43,34 @@ layout(local_size_x_id = 0, local_size_y_id = 1, local_size_z_id = 2) in;
4343 * output at a single output location.
4444 */
4545void main() {
46- // x divided up by batch size is used to determine 3d position
47- // y divided up by batch size is used to determine 3d position
46+ // x and y are divided by batch size to determine 3d position
4847 // since work size is calculated by x * ((y + B_Y - 1) / B_Y) * z
49- const ivec2 out_limits_xy_scaled = ivec2 (out_limits.xy + ivec2 (BATCH_SIZE_X, BATCH_SIZE_Y) - 1 ) / ivec2 (BATCH_SIZE_X, BATCH_SIZE_Y);
48+ const ivec2 out_limits_xy_scaled = (out_limits.xy + ivec2 (BATCH_SIZE_X, BATCH_SIZE_Y) - 1 ) / ivec2 (BATCH_SIZE_X, BATCH_SIZE_Y);
5049
51- u16vec3 pos = idx_to_u16pos_x_wise (gl_GlobalInvocationID.x, out_limits_xy_scaled.x, out_limits_xy_scaled.y);
50+ ivec3 pos = idx_to_ipos_x_wise (gl_GlobalInvocationID.x, out_limits_xy_scaled.x, out_limits_xy_scaled.y);
5251
5352 // scale pos.xy by batch sizes, because that's the top pixel to be processed
54- pos.x *= uint16_t( BATCH_SIZE_X) ;
55- pos.y *= uint16_t( BATCH_SIZE_Y) ;
53+ pos.x *= BATCH_SIZE_X;
54+ pos.y *= BATCH_SIZE_Y;
5655
5756 // do not process if top pixel does not fit within the output range
58- if (any (greaterThanEqual (u16vec3( pos.x, pos.y, pos.z) , out_limits))) {
57+ if (any (greaterThanEqual (pos, out_limits))) {
5958 return ;
6059 }
6160
6261 // Compute the index of the top-left element of the overlay region. Negative
6362 // indices indicate that the top-left element is in a region added by padding.
64- const u16vec2 ipos = pos.xy * u16vec2( stride) - u16vec2( padding) ;
63+ const ivec2 ipos = pos.xy * stride - padding;
6564
6665 // Compute the start and end of the input indices to load. Padding is assumed
6766 // to be constant 0 padding, so any reads from the padding region is skipped.
68- const u16vec2 start = ipos;
69- const u16vec2 end = ipos + u16vec2( overlay_region.xy) ;
67+ const ivec2 start = ipos;
68+ const ivec2 end = ipos + overlay_region.xy;
7069
7170 // sum outputs
7271 VEC4_T sum[BATCH_SIZE_Y][BATCH_SIZE_X];
7372
74- sum[0 ][0 ] = texelFetch(t_bias, u16vec2 (pos.z, 0 ), 0 );
73+ sum[0 ][0 ] = texelFetch(t_bias, ivec2 (pos.z, 0 ), 0 );
7574 for (int y = 0 ; y < BATCH_SIZE_Y; y++ ) {
7675 for (int x = 0 ; x < BATCH_SIZE_X; x++ ) {
7776 sum[y][x] = sum[0 ][0 ];
@@ -84,39 +83,39 @@ void main() {
8483 // array to store kernel data of previous y
8584 VEC4_T prev_kernel_line[TILE_SIZE];
8685
87- uint16_t kx = uint16_t( 0 ) ;
88- for (uint16_t y = start.y, i = uint16_t( 0 ) ; i < uint16_t( TILE_SIZE + BATCH_SIZE_Y - 1 ) ; y += uint16_t( dilation.y) , i++ ) {
89- for (uint16_t x = start.x, j = uint16_t( 0 ) ; j < uint16_t( TILE_SIZE + BATCH_SIZE_X - 1 ) ; x += uint16_t( dilation.x) , j++ ) {
90- in_texels[int (j) ] = texelFetch(t_in, u16vec3 (x, y, pos.z), 0 );
86+ int kx = 0 ;
87+ for (int y = start.y, i = 0 ; i < TILE_SIZE + BATCH_SIZE_Y - 1 ; y += dilation.y, i++ ) {
88+ for (int x = start.x, j = 0 ; j < TILE_SIZE + BATCH_SIZE_X - 1 ; x += dilation.x, j++ ) {
89+ in_texels[j ] = texelFetch(t_in, ivec3 (x, y, pos.z), 0 );
9190 }
9291
9392 // from 2nd iteration onwards accumulate dot product in 2nd sum
9493 // based on kernel line data fetched in previous iteration and input texel from this iteration
95- if (i > uint16_t( 0 ) ) {
96- for (uint16_t s = uint16_t( 0 ); s < uint16_t(BATCH_SIZE_X); s ++ ) {
97- for (uint16_t j = uint16_t( 0 ); j < uint16_t(TILE_SIZE); j ++ ) {
98- sum[1 ][int (s) ] = fma(in_texels[int (j + s) ], prev_kernel_line[int (j) ], sum[1 ][int (s) ]);
94+ if (i > 0 ) {
95+ for (int j = 0 ; j < TILE_SIZE; j ++ ) {
96+ for (int s = 0 ; s < BATCH_SIZE_X; s ++ ) {
97+ sum[1 ][s ] = fma(in_texels[j + s ], prev_kernel_line[j ], sum[1 ][s ]);
9998 }
10099 }
101100 }
102101
103102 // accumulate dot product in 1st sum only until tile size
104- if (i < uint16_t (TILE_SIZE)) {
105- for (uint16_t j = uint16_t( 0 ) ; j < uint16_t( TILE_SIZE) ; j++ , kx++ ) {
106- prev_kernel_line[int (j) ] = texelFetch(t_kernel, u16vec2 (kx, pos.z), 0 );
107- for (uint16_t s = uint16_t( 0 ) ; s < uint16_t( BATCH_SIZE_X) ; s++ ) {
108- sum[0 ][int (s) ] = fma(in_texels[int (j + s) ], prev_kernel_line[int (j) ], sum[0 ][int (s) ]);
103+ if (i < int (TILE_SIZE)) {
104+ for (int j = 0 ; j < TILE_SIZE; j++ , kx++ ) {
105+ prev_kernel_line[j ] = texelFetch(t_kernel, ivec2 (kx, pos.z), 0 );
106+ for (int s = 0 ; s < BATCH_SIZE_X; s++ ) {
107+ sum[0 ][s ] = fma(in_texels[j + s ], prev_kernel_line[j ], sum[0 ][s ]);
109108 }
110109 }
111110 }
112111 }
113112
114- for (int i = 0 ; i < BATCH_SIZE_Y; i ++ ) {
115- for (int j = 0 ; j < BATCH_SIZE_X; j ++ ) {
116- if (any (greaterThanEqual (u16vec3 (pos.x + j , pos.y + i , pos.z), out_limits))) {
113+ for (int y = 0 ; y < BATCH_SIZE_Y; y ++ ) {
114+ for (int x = 0 ; x < BATCH_SIZE_X; x ++ ) {
115+ if (any (greaterThanEqual (ivec3 (pos.x + x , pos.y + y , pos.z), out_limits))) {
117116 continue ;
118117 }
119- imageStore(t_out, u16vec3 (pos.x + j , pos.y + i , pos.z), op(sum[i][j ], out_min, out_max));
118+ imageStore(t_out, ivec3 (pos.x + x , pos.y + y , pos.z), op(sum[y][x ], out_min, out_max));
120119 }
121120 }
122121}
0 commit comments