@@ -152,33 +152,35 @@ test_model_with_qnn() {
152152
153153 export LD_LIBRARY_PATH=$QNN_SDK_ROOT /lib/x86_64-linux-clang/
154154 export PYTHONPATH=$EXECUTORCH_ROOT /..
155+ # QNN support fp16 only
156+ DTYPE=fp16
155157
156158 if [[ " ${MODEL_NAME} " == " dl3" ]]; then
157159 EXPORT_SCRIPT=deeplab_v3
158- EXPORTED_MODEL_NAME=dlv3_qnn .pte
160+ EXPORTED_MODEL_NAME=deeplab-v3_qnn_ ${DTYPE} .pte
159161 elif [[ " ${MODEL_NAME} " == " mv3" ]]; then
160162 EXPORT_SCRIPT=mobilenet_v3
161- EXPORTED_MODEL_NAME=mv3_qnn .pte
163+ EXPORTED_MODEL_NAME=mobilenet-v3_qnn_ ${DTYPE} .pte
162164 elif [[ " ${MODEL_NAME} " == " mv2" ]]; then
163165 EXPORT_SCRIPT=mobilenet_v2
164- EXPORTED_MODEL_NAME=mv2_qnn .pte
166+ EXPORTED_MODEL_NAME=mobilenet-v2_qnn_ ${DTYPE} .pte
165167 elif [[ " ${MODEL_NAME} " == " ic4" ]]; then
166168 EXPORT_SCRIPT=inception_v4
167- EXPORTED_MODEL_NAME=ic4_qnn .pte
169+ EXPORTED_MODEL_NAME=inception-v4_qnn_ ${DTYPE} .pte
168170 elif [[ " ${MODEL_NAME} " == " ic3" ]]; then
169171 EXPORT_SCRIPT=inception_v3
170- EXPORTED_MODEL_NAME=ic3_qnn .pte
172+ EXPORTED_MODEL_NAME=inception-v3_qnn_ ${DTYPE} .pte
171173 elif [[ " ${MODEL_NAME} " == " vit" ]]; then
172174 EXPORT_SCRIPT=torchvision_vit
173- EXPORTED_MODEL_NAME=vit_qnn .pte
175+ EXPORTED_MODEL_NAME=torchvision-vit_qnn_ ${DTYPE} .pte
174176 fi
175177
176178 # Use SM8450 for S22, SM8550 for S23, and SM8560 for S24
177179 # TODO(guangyang): Make QNN chipset matches the target device
178180 QNN_CHIPSET=SM8450
179181
180- " ${PYTHON_EXECUTABLE} " -m examples.qualcomm.scripts.${EXPORT_SCRIPT} -b ${CMAKE_OUTPUT_DIR} -m ${QNN_CHIPSET} --compile_only
181- EXPORTED_MODEL=./${EXPORT_SCRIPT} / ${ EXPORTED_MODEL_NAME}
182+ " ${PYTHON_EXECUTABLE} " -m examples.qualcomm.scripts.${EXPORT_SCRIPT} -b ${CMAKE_OUTPUT_DIR} -m ${QNN_CHIPSET} -a ${EXPORTED_MODEL_NAME} - -compile_only
183+ EXPORTED_MODEL=./${EXPORTED_MODEL_NAME}
182184}
183185
184186test_model_with_coreml () {
0 commit comments