|
| 1 | +# Copyright (c) Qualcomm Innovation Center, Inc. |
| 2 | +# All rights reserved |
| 3 | +# |
| 4 | +# This source code is licensed under the BSD-style license found in the |
| 5 | +# LICENSE file in the root directory of this source tree. |
| 6 | +import torch |
| 7 | +from executorch.exir.dialects._ops import ops as exir_ops |
| 8 | +from executorch.exir.pass_base import ExportPass, PassResult |
| 9 | + |
| 10 | +from .utils import copy_meta |
| 11 | + |
| 12 | + |
| 13 | +class DecomposeColIm(ExportPass): |
| 14 | + """ |
| 15 | + Decompose im2col(unfold) to pixel_unshuffle + view_copy |
| 16 | + Decompose col2im(fold) to view_copy + pixel_shuffle |
| 17 | + """ |
| 18 | + |
| 19 | + def __init__(self): |
| 20 | + super(DecomposeColIm, self).__init__() |
| 21 | + self.im2col_op = exir_ops.edge.aten.im2col.default |
| 22 | + self.col2im_op = exir_ops.edge.aten.col2im.default |
| 23 | + self.pixel_unshuffle_op = exir_ops.edge.aten.pixel_unshuffle.default |
| 24 | + self.pixel_shuffle_op = exir_ops.edge.aten.pixel_shuffle.default |
| 25 | + self.view_copy_op = exir_ops.edge.aten.view_copy.default |
| 26 | + |
| 27 | + def _decompose_im2col(self, graph_module: torch.fx.GraphModule): |
| 28 | + for node in graph_module.graph.nodes: |
| 29 | + if node.target == self.im2col_op: |
| 30 | + input_node = node.args[0] |
| 31 | + kernel_size = node.args[1] |
| 32 | + stride = node.args[4] |
| 33 | + batch_size = node.meta["val"].shape[0] |
| 34 | + assert ( |
| 35 | + stride == kernel_size |
| 36 | + ), "im2col can only be converted when stride == kernel_size" |
| 37 | + assert ( |
| 38 | + input_node.meta["val"].dim() == 4 |
| 39 | + ), "im2col can only be converted when input dims == 4" |
| 40 | + assert ( |
| 41 | + kernel_size[0] == kernel_size[1] |
| 42 | + ), "im2col can only be converted when kernel height == width" |
| 43 | + users = list(node.users.keys()) |
| 44 | + with graph_module.graph.inserting_after(input_node): |
| 45 | + pixel_unshuffle_node = graph_module.graph.create_node( |
| 46 | + "call_function", |
| 47 | + self.pixel_unshuffle_op, |
| 48 | + (input_node, kernel_size[0]), |
| 49 | + ) |
| 50 | + pixel_unshuffle_node.meta = copy_meta(node.meta) |
| 51 | + orig_height = input_node.meta["val"].shape[2] |
| 52 | + orig_width = input_node.meta["val"].shape[3] |
| 53 | + |
| 54 | + pixel_unshuffle_node.meta["val"] = pixel_unshuffle_node.meta[ |
| 55 | + "val" |
| 56 | + ].reshape( |
| 57 | + batch_size, |
| 58 | + -1, |
| 59 | + orig_height // kernel_size[0], |
| 60 | + orig_width // kernel_size[1], |
| 61 | + ) |
| 62 | + |
| 63 | + with graph_module.graph.inserting_after(pixel_unshuffle_node): |
| 64 | + view_copy_node = graph_module.graph.create_node( |
| 65 | + "call_function", |
| 66 | + self.view_copy_op, |
| 67 | + (pixel_unshuffle_node, tuple(node.meta["val"].shape)), |
| 68 | + ) |
| 69 | + view_copy_node.meta = copy_meta(node.meta) |
| 70 | + for user in users: |
| 71 | + user.replace_input_with(node, view_copy_node) |
| 72 | + |
| 73 | + def _decompose_col2im(self, graph_module: torch.fx.GraphModule): |
| 74 | + for node in graph_module.graph.nodes: |
| 75 | + if node.target == self.col2im_op: |
| 76 | + input_node = node.args[0] |
| 77 | + output_size = node.args[1] |
| 78 | + kernel_size = node.args[2] |
| 79 | + stride = node.args[5] |
| 80 | + batch_size = node.meta["val"].shape[0] |
| 81 | + assert ( |
| 82 | + stride == kernel_size |
| 83 | + ), "col2im can only be converted when stride == kernel_size" |
| 84 | + assert ( |
| 85 | + node.meta["val"].dim() == 4 |
| 86 | + ), "col2im can only be converted when output dims == 4" |
| 87 | + assert ( |
| 88 | + kernel_size[0] == kernel_size[1] |
| 89 | + ), "col2im can only be converted when kernel height == width" |
| 90 | + users = list(node.users.keys()) |
| 91 | + with graph_module.graph.inserting_after(input_node): |
| 92 | + view_tensor = input_node.meta["val"].reshape( |
| 93 | + batch_size, |
| 94 | + -1, |
| 95 | + output_size[0] // kernel_size[0], |
| 96 | + output_size[1] // kernel_size[1], |
| 97 | + ) |
| 98 | + view_copy_node = graph_module.graph.create_node( |
| 99 | + "call_function", |
| 100 | + self.view_copy_op, |
| 101 | + (input_node, tuple(view_tensor.shape)), |
| 102 | + ) |
| 103 | + view_copy_node.meta = copy_meta(node.meta) |
| 104 | + view_copy_node.meta["val"] = view_tensor |
| 105 | + |
| 106 | + with graph_module.graph.inserting_after(view_copy_node): |
| 107 | + pixel_shuffle_node = graph_module.graph.create_node( |
| 108 | + "call_function", |
| 109 | + self.pixel_shuffle_op, |
| 110 | + (view_copy_node, kernel_size[0]), |
| 111 | + ) |
| 112 | + pixel_shuffle_node.meta = copy_meta(node.meta) |
| 113 | + |
| 114 | + for user in users: |
| 115 | + user.replace_input_with(node, pixel_shuffle_node) |
| 116 | + |
| 117 | + def call(self, graph_module: torch.fx.GraphModule): |
| 118 | + self._decompose_im2col(graph_module) |
| 119 | + self._decompose_col2im(graph_module) |
| 120 | + graph_module.recompile() |
| 121 | + return PassResult(graph_module, True) |
0 commit comments