|
| 1 | +/* |
| 2 | + * Copyright (c) Meta Platforms, Inc. and affiliates. |
| 3 | + * All rights reserved. |
| 4 | + * |
| 5 | + * This source code is licensed under the BSD-style license found in the |
| 6 | + * LICENSE file in the root directory of this source tree. |
| 7 | + */ |
| 8 | +#include <c10/util/irange.h> |
| 9 | +#include <algorithm> |
| 10 | +#include <cmath> |
| 11 | + |
| 12 | +#include <executorch/kernels/portable/cpu/util/upsample_util.h> |
| 13 | +#include <executorch/runtime/kernel/kernel_includes.h> |
| 14 | + |
| 15 | +namespace torch { |
| 16 | +namespace executor { |
| 17 | +namespace native { |
| 18 | + |
| 19 | +using executorch::aten::ArrayRef; |
| 20 | +using executorch::aten::SizesType; |
| 21 | +using std::optional; |
| 22 | + |
| 23 | +namespace { |
| 24 | + |
| 25 | +// Anti-aliasing filter for bilinear interpolation |
| 26 | +// Adapted from PyTorch's implementation |
| 27 | +template <typename T> |
| 28 | +inline T bilinear_aa_filter(T x) { |
| 29 | + x = std::abs(x); |
| 30 | + if (x < 1.0) { |
| 31 | + return 1.0 - x; |
| 32 | + } |
| 33 | + return 0.0; |
| 34 | +} |
| 35 | + |
| 36 | +// Compute weights and indices for a single output pixel with anti-aliasing |
| 37 | +template <typename T> |
| 38 | +void compute_aa_weights_for_pixel( |
| 39 | + int64_t output_idx, |
| 40 | + int64_t input_size, |
| 41 | + int64_t output_size, |
| 42 | + bool align_corners, |
| 43 | + int64_t* indices, |
| 44 | + T* weights, |
| 45 | + int64_t* num_contributors) { |
| 46 | + const T scale = area_pixel_compute_scale<T>( |
| 47 | + input_size, output_size, align_corners, optional<double>()); |
| 48 | + |
| 49 | + const T center = area_pixel_compute_source_index<T>( |
| 50 | + scale, output_idx, align_corners, /*cubic=*/false); |
| 51 | + |
| 52 | + // Support is the filter radius - for downsampling, we need a larger filter |
| 53 | + const T support = (scale >= 1.0) ? scale : 1.0; |
| 54 | + |
| 55 | + // Find the range of input pixels that contribute |
| 56 | + const int64_t xmin = std::max( |
| 57 | + static_cast<int64_t>(center - support + 0.5), static_cast<int64_t>(0)); |
| 58 | + const int64_t xmax = |
| 59 | + std::min(static_cast<int64_t>(center + support + 0.5), input_size); |
| 60 | + |
| 61 | + T total_weight = 0.0; |
| 62 | + *num_contributors = std::min(xmax - xmin, int64_t(4)); |
| 63 | + |
| 64 | + // Compute weights for contributing pixels |
| 65 | + for (int64_t j = 0; j < *num_contributors; ++j) { |
| 66 | + int64_t x = xmin + j; |
| 67 | + T weight = bilinear_aa_filter<T>( |
| 68 | + (x - center + 0.5) / (scale >= 1.0 ? scale : 1.0)); |
| 69 | + indices[j] = x; |
| 70 | + weights[j] = weight; |
| 71 | + total_weight += weight; |
| 72 | + } |
| 73 | + |
| 74 | + // Normalize weights |
| 75 | + if (total_weight > 0) { |
| 76 | + for (int64_t j = 0; j < *num_contributors; ++j) { |
| 77 | + weights[j] /= total_weight; |
| 78 | + } |
| 79 | + } |
| 80 | +} |
| 81 | + |
| 82 | +template <typename CTYPE> |
| 83 | +void upsample_bilinear2d_aa_kernel_impl( |
| 84 | + KernelRuntimeContext& ctx, |
| 85 | + const Tensor& in, |
| 86 | + bool align_corners, |
| 87 | + const float scale_h, |
| 88 | + const float scale_w, |
| 89 | + Tensor& out) { |
| 90 | + const auto in_data = in.const_data_ptr<CTYPE>(); |
| 91 | + auto out_data = out.mutable_data_ptr<CTYPE>(); |
| 92 | + |
| 93 | + const bool is_nchw = |
| 94 | + is_contiguous_dim_order(in.dim_order().data(), in.dim_order().size()); |
| 95 | + |
| 96 | + if (is_nchw) { |
| 97 | + // NCHW layout |
| 98 | + for (int64_t n = 0; n < out.size(0); ++n) { |
| 99 | + for (int64_t c = 0; c < out.size(1); ++c) { |
| 100 | + const auto in_plane = |
| 101 | + in_data + (n * in.size(1) + c) * in.size(2) * in.size(3); |
| 102 | + auto out_plane = |
| 103 | + out_data + (n * out.size(1) + c) * out.size(2) * out.size(3); |
| 104 | + |
| 105 | + for (int64_t oh = 0; oh < out.size(2); ++oh) { |
| 106 | + // Compute height weights for this output row |
| 107 | + int64_t h_indices[4]; |
| 108 | + float h_weights[4]; |
| 109 | + int64_t h_num_contributors; |
| 110 | + compute_aa_weights_for_pixel<float>( |
| 111 | + oh, |
| 112 | + in.size(2), |
| 113 | + out.size(2), |
| 114 | + align_corners, |
| 115 | + h_indices, |
| 116 | + h_weights, |
| 117 | + &h_num_contributors); |
| 118 | + |
| 119 | + for (int64_t ow = 0; ow < out.size(3); ++ow) { |
| 120 | + // Compute width weights for this output column |
| 121 | + int64_t w_indices[4]; |
| 122 | + float w_weights[4]; |
| 123 | + int64_t w_num_contributors; |
| 124 | + compute_aa_weights_for_pixel<float>( |
| 125 | + ow, |
| 126 | + in.size(3), |
| 127 | + out.size(3), |
| 128 | + align_corners, |
| 129 | + w_indices, |
| 130 | + w_weights, |
| 131 | + &w_num_contributors); |
| 132 | + |
| 133 | + CTYPE value = 0; |
| 134 | + |
| 135 | + // Apply anti-aliased interpolation |
| 136 | + for (int64_t ih_idx = 0; ih_idx < h_num_contributors; ++ih_idx) { |
| 137 | + int64_t ih = h_indices[ih_idx]; |
| 138 | + float h_weight = h_weights[ih_idx]; |
| 139 | + |
| 140 | + for (int64_t iw_idx = 0; iw_idx < w_num_contributors; ++iw_idx) { |
| 141 | + int64_t iw = w_indices[iw_idx]; |
| 142 | + float w_weight = w_weights[iw_idx]; |
| 143 | + |
| 144 | + value += in_plane[ih * in.size(3) + iw] * h_weight * w_weight; |
| 145 | + } |
| 146 | + } |
| 147 | + |
| 148 | + out_plane[oh * out.size(3) + ow] = value; |
| 149 | + } |
| 150 | + } |
| 151 | + } |
| 152 | + } |
| 153 | + } else { |
| 154 | + // NHWC layout |
| 155 | + for (int64_t n = 0; n < out.size(0); ++n) { |
| 156 | + const auto in_batch = in_data + n * in.size(1) * in.size(2) * in.size(3); |
| 157 | + auto out_batch = out_data + n * out.size(1) * out.size(2) * out.size(3); |
| 158 | + |
| 159 | + for (int64_t oh = 0; oh < out.size(2); ++oh) { |
| 160 | + // Compute height weights for this output row |
| 161 | + int64_t h_indices[4]; |
| 162 | + float h_weights[4]; |
| 163 | + int64_t h_num_contributors; |
| 164 | + compute_aa_weights_for_pixel<float>( |
| 165 | + oh, |
| 166 | + in.size(2), |
| 167 | + out.size(2), |
| 168 | + align_corners, |
| 169 | + h_indices, |
| 170 | + h_weights, |
| 171 | + &h_num_contributors); |
| 172 | + |
| 173 | + for (int64_t ow = 0; ow < out.size(3); ++ow) { |
| 174 | + // Compute width weights for this output column |
| 175 | + int64_t w_indices[4]; |
| 176 | + float w_weights[4]; |
| 177 | + int64_t w_num_contributors; |
| 178 | + compute_aa_weights_for_pixel<float>( |
| 179 | + ow, |
| 180 | + in.size(3), |
| 181 | + out.size(3), |
| 182 | + align_corners, |
| 183 | + w_indices, |
| 184 | + w_weights, |
| 185 | + &w_num_contributors); |
| 186 | + |
| 187 | + for (int64_t c = 0; c < out.size(1); ++c) { |
| 188 | + CTYPE value = 0; |
| 189 | + |
| 190 | + // Apply anti-aliased interpolation |
| 191 | + for (int64_t ih_idx = 0; ih_idx < h_num_contributors; ++ih_idx) { |
| 192 | + int64_t ih = h_indices[ih_idx]; |
| 193 | + float h_weight = h_weights[ih_idx]; |
| 194 | + |
| 195 | + for (int64_t iw_idx = 0; iw_idx < w_num_contributors; ++iw_idx) { |
| 196 | + int64_t iw = w_indices[iw_idx]; |
| 197 | + float w_weight = w_weights[iw_idx]; |
| 198 | + |
| 199 | + value += in_batch[(ih * in.size(3) + iw) * in.size(1) + c] * |
| 200 | + h_weight * w_weight; |
| 201 | + } |
| 202 | + } |
| 203 | + |
| 204 | + out_batch[(oh * out.size(3) + ow) * out.size(1) + c] = value; |
| 205 | + } |
| 206 | + } |
| 207 | + } |
| 208 | + } |
| 209 | + } |
| 210 | +} |
| 211 | + |
| 212 | +} // namespace |
| 213 | + |
| 214 | +// Check function for anti-aliased bilinear upsampling |
| 215 | +bool check_upsample_bilinear2d_aa_args( |
| 216 | + const Tensor& in, |
| 217 | + const executorch::aten::OptionalArrayRef<int64_t>& output_size, |
| 218 | + const bool align_corners, |
| 219 | + const executorch::aten::OptionalArrayRef<double>& scale_factors, |
| 220 | + Tensor& out) { |
| 221 | + // Use the same checks as regular bilinear upsampling |
| 222 | + return check_upsample_bilinear2d_args( |
| 223 | + in, output_size, align_corners, scale_factors, out); |
| 224 | +} |
| 225 | + |
| 226 | +// Main entry point for anti-aliased bilinear upsampling |
| 227 | +Tensor& _upsample_bilinear2d_aa_out( |
| 228 | + KernelRuntimeContext& ctx, |
| 229 | + const Tensor& in, |
| 230 | + const executorch::aten::OptionalArrayRef<int64_t> output_size, |
| 231 | + bool align_corners, |
| 232 | + const executorch::aten::OptionalArrayRef<double> scale_factors, |
| 233 | + Tensor& out) { |
| 234 | + // Preconditions (checked in check_..._args): |
| 235 | + // In and out tensors have same dtype. |
| 236 | + // In and out tensors are rank 4 and have same dim[0] and dim[1]. |
| 237 | + // In and out tensors are NHWC or NCHW dim order. |
| 238 | + ET_KERNEL_CHECK( |
| 239 | + ctx, |
| 240 | + check_upsample_bilinear2d_aa_args( |
| 241 | + in, output_size, align_corners, scale_factors, out), |
| 242 | + InvalidArgument, |
| 243 | + out); |
| 244 | + |
| 245 | + double scale_h, scale_w; |
| 246 | + |
| 247 | + ET_KERNEL_CHECK_MSG( |
| 248 | + ctx, |
| 249 | + resize_upsample_2d( |
| 250 | + in, output_size, scale_factors, scale_h, scale_w, out) == Error::Ok, |
| 251 | + InvalidArgument, |
| 252 | + out, |
| 253 | + "Failed to resize output tensor"); |
| 254 | + |
| 255 | + const auto kernel_scale_h = area_pixel_compute_scale<double>( |
| 256 | + in.sizes()[2], out.sizes()[2], align_corners, scale_h); |
| 257 | + const auto kernel_scale_w = area_pixel_compute_scale<double>( |
| 258 | + in.sizes()[3], out.sizes()[3], align_corners, scale_w); |
| 259 | + |
| 260 | + ET_SWITCH_REALHBF16_TYPES( |
| 261 | + in.scalar_type(), ctx, "_upsample_bilinear2d_aa.out", CTYPE, [&]() { |
| 262 | + upsample_bilinear2d_aa_kernel_impl<CTYPE>( |
| 263 | + ctx, in, align_corners, kernel_scale_h, kernel_scale_w, out); |
| 264 | + }); |
| 265 | + |
| 266 | + return out; |
| 267 | +} |
| 268 | + |
| 269 | +} // namespace native |
| 270 | +} // namespace executor |
| 271 | +} // namespace torch |
0 commit comments