-An ExecuTorch program encodes instructions that describe the computation that should be performed by the program. Many of these instructions will correspond to calling a specific ATen operator, for example `aten.convolution`. However, one of the core design principles of ExecuTorch is that the signature of an operator should be separate from the implementation of the operator. This means that the ExecuTorch runtime does not ship with any standard implementation for ATen operators; users must make sure to link against kernel libraries that contain implementations of the operators required by their ExecuTorch program, and configure [operator registration](https://github.com/pytorch/executorch/blob/main/docs/website/docs/tutorials/aten_ops_and_aten_mode.md) to map an operator signature to the desired implementation. This makes it easy to adjust the implementation of operators such as `aten.convolution` that will be called when executing an ExecuTorch program; it allows users to select the exact operator implementations that will meet the unique performance, memory usage, battery usage, etc. constraints of their use-case.
0 commit comments