Skip to content

Commit ee65b0a

Browse files
committed
fix test
1 parent 89b1099 commit ee65b0a

File tree

1 file changed

+40
-40
lines changed

1 file changed

+40
-40
lines changed

backends/xnnpack/test/passes/test_channels_last_tagged_reshape.py

Lines changed: 40 additions & 40 deletions
Original file line numberDiff line numberDiff line change
@@ -229,46 +229,46 @@ def forward(self, x):
229229
x = torch.mean(x, (-1, -2), keepdim=True)
230230
return x
231231

232-
# def test_fp32_channels_last_tagged_reshape_pass_conv_bn_hardtanh_mean_seq(self):
233-
# Copy #1 is for input to conv, nchw -> nhwc
234-
# Copy #2 is for conv to _native_batch_norm_legit_no_training, nhwc -> nchw
235-
# Copy #3 is for input to mean, nchw -> nhwc
236-
# Copy #4 is for output, nhwc -> nchw
237-
238-
# The graph looks like:
239-
# graph():
240-
# %arg0_1 : [#users=1] = placeholder[target=arg0_1]
241-
# %aten__to_copy_default : [#users=1] = call_function[target=executorch.exir.dialects.edge._ops.aten._to_copy.default](args = (%arg0_1,), kwargs = {memory_format: torch.channels_last})
242-
# %_param_constant0 : [#users=1] = get_attr[target=_param_constant0]
243-
# %_param_constant1 : [#users=1] = get_attr[target=_param_constant1]
244-
# %aten_convolution_default : [#users=1] = call_function[target=executorch.exir.dialects.edge._ops.aten.convolution.default](args = (%aten__to_copy_default, %_param_constant0, %_param_constant1, [2, 2], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
245-
# %aten__to_copy_default_1 : [#users=1] = call_function[target=executorch.exir.dialects.edge._ops.aten._to_copy.default](args = (%aten_convolution_default,), kwargs = {memory_format: torch.contiguous_format})
246-
# %_param_constant2 : [#users=1] = get_attr[target=_param_constant2]
247-
# %_param_constant3 : [#users=1] = get_attr[target=_param_constant3]
248-
# %_tensor_constant0 : [#users=1] = get_attr[target=_tensor_constant0]
249-
# %_tensor_constant1 : [#users=1] = get_attr[target=_tensor_constant1]
250-
# %aten__native_batch_norm_legit_no_training_default : [#users=1] = call_function[target=executorch.exir.dialects.edge._ops.aten._native_batch_norm_legit_no_training.default](args = (%aten__to_copy_default_1, %_param_constant2, %_param_constant3, %_tensor_constant0, %_tensor_constant1, 0.1, 1e-05), kwargs = {})
251-
# %getitem : [#users=1] = call_function[target=operator.getitem](args = (%aten__native_batch_norm_legit_no_training_default, 0), kwargs = {})
252-
# %aten_hardtanh_default : [#users=1] = call_function[target=executorch.exir.dialects.edge._ops.aten.hardtanh.default](args = (%getitem, 0, 6), kwargs = {})
253-
# %aten__to_copy_default_2 : [#users=1] = call_function[target=executorch.exir.dialects.edge._ops.aten._to_copy.default](args = (%aten_hardtanh_default,), kwargs = {memory_format: torch.channels_last})
254-
# %aten_mean_dim : [#users=1] = call_function[target=executorch.exir.dialects.edge._ops.aten.mean.dim](args = (%aten__to_copy_default_2, [-1, -2], True), kwargs = {})
255-
# %aten__to_copy_default_3 : [#users=1] = call_function[target=executorch.exir.dialects.edge._ops.aten._to_copy.default](args = (%aten_mean_dim,), kwargs = {memory_format: torch.contiguous_format})
256-
# return [aten__to_copy_default_3]
257-
# (
258-
# Tester(
259-
# self.Conv2dBnHardtanhMeanSequenceModule().eval(),
260-
# (torch.randn(1, 1, 6, 6),),
261-
# )
262-
# .export()
263-
# .to_edge()
264-
# .run_passes(self.PassStage)
265-
# .check_count(
266-
# {
267-
# self.to_copy_name: 4,
268-
# }
269-
# )
270-
# .run_method_and_compare_outputs()
271-
# )
232+
def test_fp32_channels_last_tagged_reshape_pass_conv_bn_hardtanh_mean_seq(self):
233+
# Copy #1 is for input to conv, nchw -> nhwc
234+
# Copy #2 is for conv to _native_batch_norm_legit_no_training, nhwc -> nchw
235+
# Copy #3 is for input to mean, nchw -> nhwc
236+
# Copy #4 is for output, nhwc -> nchw
237+
238+
# The graph looks like:
239+
# graph():
240+
# %arg0_1 : [#users=1] = placeholder[target=arg0_1]
241+
# %aten__to_copy_default : [#users=1] = call_function[target=executorch.exir.dialects.edge._ops.aten._to_copy.default](args = (%arg0_1,), kwargs = {memory_format: torch.channels_last})
242+
# %_param_constant0 : [#users=1] = get_attr[target=_param_constant0]
243+
# %_param_constant1 : [#users=1] = get_attr[target=_param_constant1]
244+
# %aten_convolution_default : [#users=1] = call_function[target=executorch.exir.dialects.edge._ops.aten.convolution.default](args = (%aten__to_copy_default, %_param_constant0, %_param_constant1, [2, 2], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
245+
# %aten__to_copy_default_1 : [#users=1] = call_function[target=executorch.exir.dialects.edge._ops.aten._to_copy.default](args = (%aten_convolution_default,), kwargs = {memory_format: torch.contiguous_format})
246+
# %_param_constant2 : [#users=1] = get_attr[target=_param_constant2]
247+
# %_param_constant3 : [#users=1] = get_attr[target=_param_constant3]
248+
# %_tensor_constant0 : [#users=1] = get_attr[target=_tensor_constant0]
249+
# %_tensor_constant1 : [#users=1] = get_attr[target=_tensor_constant1]
250+
# %aten__native_batch_norm_legit_no_training_default : [#users=1] = call_function[target=executorch.exir.dialects.edge._ops.aten._native_batch_norm_legit_no_training.default](args = (%aten__to_copy_default_1, %_param_constant2, %_param_constant3, %_tensor_constant0, %_tensor_constant1, 0.1, 1e-05), kwargs = {})
251+
# %getitem : [#users=1] = call_function[target=operator.getitem](args = (%aten__native_batch_norm_legit_no_training_default, 0), kwargs = {})
252+
# %aten_hardtanh_default : [#users=1] = call_function[target=executorch.exir.dialects.edge._ops.aten.hardtanh.default](args = (%getitem, 0, 6), kwargs = {})
253+
# %aten__to_copy_default_2 : [#users=1] = call_function[target=executorch.exir.dialects.edge._ops.aten._to_copy.default](args = (%aten_hardtanh_default,), kwargs = {memory_format: torch.channels_last})
254+
# %aten_mean_dim : [#users=1] = call_function[target=executorch.exir.dialects.edge._ops.aten.mean.dim](args = (%aten__to_copy_default_2, [-1, -2], True), kwargs = {})
255+
# %aten__to_copy_default_3 : [#users=1] = call_function[target=executorch.exir.dialects.edge._ops.aten._to_copy.default](args = (%aten_mean_dim,), kwargs = {memory_format: torch.contiguous_format})
256+
# return [aten__to_copy_default_3]
257+
(
258+
Tester(
259+
self.Conv2dBnHardtanhMeanSequenceModule().eval(),
260+
(torch.randn(1, 1, 6, 6),),
261+
)
262+
.export()
263+
.to_edge()
264+
.run_passes(self.PassStage)
265+
.check_count(
266+
{
267+
self.to_copy_name: 4,
268+
}
269+
)
270+
.run_method_and_compare_outputs()
271+
)
272272

273273
class Conv2dDynamicQuant(torch.nn.Module):
274274
def __init__(self):

0 commit comments

Comments
 (0)