@@ -111,7 +111,7 @@ def test_qnn_backend_arange(self):
111111 for i , module in enumerate (modules ):
112112 with self .subTest (i = i ):
113113 self .lower_module_and_test_output (module , sample_input )
114-
114+
115115 def test_qnn_backend_argmin (self ):
116116 module = Conv2dArgmin () # noqa: F405
117117 sample_input = (torch .randn (16 , 3 , 16 , 16 ),)
@@ -546,6 +546,11 @@ def test_qnn_backend_minimum(self):
546546 sample_input = (torch .randn (1 , 2 , 3 , 4 ), torch .randn (2 , 3 , 4 ))
547547 self .lower_module_and_test_output (module , sample_input )
548548
549+ def test_qnn_backend_neg (self ):
550+ module = Neg () # noqa: F405
551+ sample_input = (torch .randn (1 , 4 , 16 , 16 ),)
552+ self .lower_module_and_test_output (module , sample_input )
553+
549554 def test_qnn_backend_pad (self ):
550555 module = Pad () # noqa: F405
551556 sample_input = (torch .randn ([1 , 8 , 128 ]),)
@@ -1434,6 +1439,12 @@ def test_qnn_backend_minimum(self):
14341439 module = self .get_qdq_module (module , sample_input )
14351440 self .lower_module_and_test_output (module , sample_input )
14361441
1442+ def test_qnn_backend_neg (self ):
1443+ module = Neg () # noqa: F405
1444+ sample_input = (torch .randn (1 , 4 , 16 , 16 ),)
1445+ module = self .get_qdq_module (module , sample_input )
1446+ self .lower_module_and_test_output (module , sample_input )
1447+
14371448 def test_qnn_backend_pad (self ):
14381449 module = Pad () # noqa: F405
14391450 sample_input = (torch .randn ([1 , 8 , 128 ]),)
@@ -1603,8 +1614,6 @@ def test_qnn_backend_view(self):
16031614 module = self .get_qdq_module (module , sample_input )
16041615 self .lower_module_and_test_output (module , sample_input )
16051616
1606-
1607-
16081617
16091618class TestQNNQuantizedModel (TestQNN ):
16101619 # TODO: refactor to support different backends
0 commit comments