|
| 1 | +# Copyright (c) Meta Platforms, Inc. and affiliates. |
| 2 | +# All rights reserved. |
| 3 | +# |
| 4 | +# This source code is licensed under the BSD-style license found in the |
| 5 | +# LICENSE file in the root directory of this source tree. |
| 6 | + |
| 7 | +# pyre-unsafe |
| 8 | + |
| 9 | +from typing import Optional |
| 10 | + |
| 11 | +import torch |
| 12 | +from executorch.backends.test.suite.flow import TestFlow |
| 13 | + |
| 14 | +from executorch.backends.test.suite.operators import ( |
| 15 | + dtype_test, |
| 16 | + operator_test, |
| 17 | + OperatorTest, |
| 18 | +) |
| 19 | + |
| 20 | + |
| 21 | +class Model(torch.nn.Module): |
| 22 | + def __init__( |
| 23 | + self, |
| 24 | + num_embeddings=10, |
| 25 | + embedding_dim=5, |
| 26 | + mode="mean", |
| 27 | + padding_idx: Optional[int] = None, |
| 28 | + norm_type: float = 2.0, |
| 29 | + include_last_offset: bool = False, |
| 30 | + ): |
| 31 | + super().__init__() |
| 32 | + self.embedding_bag = torch.nn.EmbeddingBag( |
| 33 | + num_embeddings=num_embeddings, |
| 34 | + embedding_dim=embedding_dim, |
| 35 | + mode=mode, |
| 36 | + padding_idx=padding_idx, |
| 37 | + norm_type=norm_type, |
| 38 | + include_last_offset=include_last_offset, |
| 39 | + ) |
| 40 | + |
| 41 | + def forward(self, x, offsets=None): |
| 42 | + return self.embedding_bag(x, offsets) |
| 43 | + |
| 44 | + |
| 45 | +@operator_test |
| 46 | +class EmbeddingBag(OperatorTest): |
| 47 | + @dtype_test |
| 48 | + def test_embedding_bag_dtype(self, flow: TestFlow, dtype) -> None: |
| 49 | + indices = torch.tensor([1, 2, 4, 5, 4, 3, 2, 9], dtype=torch.long) |
| 50 | + offsets = torch.tensor([0, 4], dtype=torch.long) |
| 51 | + self._test_op( |
| 52 | + Model().to(dtype), |
| 53 | + (indices, offsets), |
| 54 | + flow, |
| 55 | + generate_random_test_inputs=False, |
| 56 | + ) |
| 57 | + |
| 58 | + def test_embedding_bag_basic(self, flow: TestFlow) -> None: |
| 59 | + indices = torch.tensor([1, 2, 4, 5, 4, 3, 2, 9], dtype=torch.long) |
| 60 | + offsets = torch.tensor([0, 4], dtype=torch.long) |
| 61 | + self._test_op( |
| 62 | + Model(), |
| 63 | + (indices, offsets), |
| 64 | + flow, |
| 65 | + generate_random_test_inputs=False, |
| 66 | + ) |
| 67 | + |
| 68 | + def test_embedding_bag_sizes(self, flow: TestFlow) -> None: |
| 69 | + indices = torch.tensor([1, 2, 3, 1], dtype=torch.long) |
| 70 | + offsets = torch.tensor([0, 2], dtype=torch.long) |
| 71 | + |
| 72 | + self._test_op( |
| 73 | + Model(num_embeddings=5, embedding_dim=3), |
| 74 | + (indices, offsets), |
| 75 | + flow, |
| 76 | + generate_random_test_inputs=False, |
| 77 | + ) |
| 78 | + |
| 79 | + indices = torch.tensor([5, 20, 10, 43, 7], dtype=torch.long) |
| 80 | + offsets = torch.tensor([0, 2, 4], dtype=torch.long) |
| 81 | + self._test_op( |
| 82 | + Model(num_embeddings=50, embedding_dim=10), |
| 83 | + (indices, offsets), |
| 84 | + flow, |
| 85 | + generate_random_test_inputs=False, |
| 86 | + ) |
| 87 | + |
| 88 | + indices = torch.tensor([100, 200, 300, 400], dtype=torch.long) |
| 89 | + offsets = torch.tensor([0, 2], dtype=torch.long) |
| 90 | + self._test_op( |
| 91 | + Model(num_embeddings=500, embedding_dim=20), |
| 92 | + (indices, offsets), |
| 93 | + flow, |
| 94 | + generate_random_test_inputs=False, |
| 95 | + ) |
| 96 | + |
| 97 | + def test_embedding_bag_modes(self, flow: TestFlow) -> None: |
| 98 | + indices = torch.tensor([1, 2, 4, 5, 4, 3, 2, 9], dtype=torch.long) |
| 99 | + offsets = torch.tensor([0, 4], dtype=torch.long) |
| 100 | + |
| 101 | + self._test_op( |
| 102 | + Model(mode="sum"), |
| 103 | + (indices, offsets), |
| 104 | + flow, |
| 105 | + generate_random_test_inputs=False, |
| 106 | + ) |
| 107 | + self._test_op( |
| 108 | + Model(mode="mean"), |
| 109 | + (indices, offsets), |
| 110 | + flow, |
| 111 | + generate_random_test_inputs=False, |
| 112 | + ) |
| 113 | + self._test_op( |
| 114 | + Model(mode="max"), |
| 115 | + (indices, offsets), |
| 116 | + flow, |
| 117 | + generate_random_test_inputs=False, |
| 118 | + ) |
| 119 | + |
| 120 | + def test_embedding_bag_padding_idx(self, flow: TestFlow) -> None: |
| 121 | + indices = torch.tensor([0, 1, 2, 0, 3, 0, 4], dtype=torch.long) |
| 122 | + offsets = torch.tensor([0, 3, 6], dtype=torch.long) |
| 123 | + |
| 124 | + self._test_op( |
| 125 | + Model(padding_idx=0), |
| 126 | + (indices, offsets), |
| 127 | + flow, |
| 128 | + generate_random_test_inputs=False, |
| 129 | + ) |
| 130 | + |
| 131 | + indices = torch.tensor([1, 5, 2, 5, 3, 5, 4], dtype=torch.long) |
| 132 | + offsets = torch.tensor([0, 3, 6], dtype=torch.long) |
| 133 | + |
| 134 | + self._test_op( |
| 135 | + Model(padding_idx=5), |
| 136 | + (indices, offsets), |
| 137 | + flow, |
| 138 | + generate_random_test_inputs=False, |
| 139 | + ) |
| 140 | + |
| 141 | + def test_embedding_bag_include_last_offset(self, flow: TestFlow) -> None: |
| 142 | + indices = torch.tensor([1, 2, 4, 5, 4, 3, 2, 9], dtype=torch.long) |
| 143 | + offsets = torch.tensor([0, 4], dtype=torch.long) |
| 144 | + |
| 145 | + self._test_op( |
| 146 | + Model(include_last_offset=True), |
| 147 | + (indices, offsets), |
| 148 | + flow, |
| 149 | + generate_random_test_inputs=False, |
| 150 | + ) |
0 commit comments